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Abstract 

Geological sequestration can be used to reduce greenhouse CO2 emissions to the 
atmosphere.  The three potential geological storage options are depleted oil and gas 
reservoirs, deep saline aquifers, and unminable coal beds.  Subsurface monitoring will be 
necessary for leak detection, to provide information for optimizing injection, and to 
support the safety case that will be required for site licensing.  Leak detection is probably 
the main concern, though other applications such as monitoring for verification of 
sequestered volumes may be important.  Although our feasibility study show that 
subsurface CO2 monitoring may be possible with a number of different geophysical 
methods, we believe that seismic is the key technology because of its effectiveness at 
detecting small volumes, its pervasive applicability in different geological settings, and 
its potential for high spatial- and temporal-resolution as may be needed during the 
lifetime of an storage site. 

 
The focus of our research is the development of a novel approach to continuous 4-D 

seismic monitoring.  In order to make continuous observations practical, we propose to 
use sparse spatial coverage from low-power coded or continuous-wave sources.  Our 
research indicates that the quality of sparse data imaging can be improved through use of 
special imaging algorithms that take advantage of temporal regularization and predictive 
model evolution.  We have developed simulation tools and used them to simulate our 
monitoring strategies with high-performance computer clusters.  The next activity is to 
test this monitoring approach on field data sets.   

 
In this report, we present the results from the feasibility analysis that lead to our focus 

on seismic methods.  Then we present a coupled approach for the study and development 
of the strategy for continuous-in-time seismic monitoring.  This coupled approach 
includes the development of a new laboratory method for low frequency acoustic rock 
properties, especially attenuation, and the development of multi-scale simulation tools for 
seismic wave propagation in visco-elastic media.  Finally, we present our new and novel 
approach for continuous 4-D seismic monitoring that includes arrays of embedded 
sources and detectors and strategies for adaptive imaging.  Conclusions: (1) Sparse 
spatial coverage is required to enable continuous temporal coverage; (2) Improved 
temporal coverage may compensate somewhat for sparse spatial coverage; (3) Circular 
arrays provide the best spatial coverage; (4) Frequency domain data acquisition and 
imaging methods improve 3-D coverage from sparse datasets. 
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1.  Introduction 

CO2 Sequestration is the process of capturing, separating, transporting, and storing 
waste CO2.   The motivation is that CO2 storage mitigates its contribution to global 
climate change.  Three principal types of geological storage formations are being 
considered, namely depleted oil and gas reservoirs, deep saline and cold beds.  
Appropriate levels of monitoring of storage sites will be needed in order to help manage 
the injection process and to insure public safety in the event of an inadvertent leak like 
that illustrated in Figure 1.1. 

 

 

Figure 1.1: This drawing of a CO2 storage site illustrates the need subsurface monitoring.  The 
layers above the reservoir provides sealing and flow barriers.  A fault indicates a possible CO2 
leak path.  

 

Geological sequestration tests have been performed worldwide.  Commercial scale 
projects include Sleipner, Norway, Weyburn, Canada, In Salah, Algeria, and Snohvit, 
Norway.  At Sleipner, CO2 is captured from an off-shore natural gas processing platform 
and injected into a saline formation.  Five 3-D seismic surveys were acquired in 1994 
(baseline), 1999, 2001, 2002, and 2005 for monitoring the subsurface storage.  Seismic 
images have clearly shown the CO2 plume and verified containment.  Weyburn is an 
enhanced oil recovery (EOR) project.  The CO2 used at Weynurn is captured in North 
Dakota and piped across the US-Canada border to the Weyburn oilfield in Saskatchewan.  
Various monitoring activities are conducted with this EOR project.  At In Salah, CO2 is 
captured from natural gas processing and re-injected to enhance natural gas recovery.  It 
is a test-bed for monitoring technologies.  Examples of pilot scale sequestration tests are 
K12B (Netherlands, gas reservoir, started in 2004), Otway (Australia, gas reservoir, 
2006), RECOPOL (Poland, coal seem, 2004), Hokkaido (Japan, enhanced coal bed 
methane, 2004), and CASTOR (Europe, capture and storage, 2004).   

4-D seismic imaging plays a key role in current subsurface monitoring strategies for 
CO2 geological storage.  In these projects, complete 3-D seismic surveys are repeatedly 
acquired, typically at time intervals of several years, to detect the subsurface changes 
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caused by the injection of CO2.  There are two problems with this typical approach with 
regards to routine monitoring: the cost of mobilizing and implementing repeated 3-D 
surveys is expensive, especially for routine waste monitoring that is expected to run for 
decades; and repeated surveys at intervals of years or more will not be effective for safety 
purposes, especially leak detection, and is possibly unlikely to meet the expected terms of 
a site licensing agreement. 

The objective of our project is to develop new and innovative strategies that are well 
suitable to continuous seismic monitoring of CO2 storage.  We say our goal is to develop 
a true 4-D monitoring strategy, where time is the sampled 4th dimension.  We first 
investigated a variety of geophysical monitoring methods including seismic, 
electromagnetic, gravity, and deformation, which are techniques that have potential for 
use in geological CO2 sequestration (Appendix A).  We found that each of these methods 
have some potential for the monitoring, but concluded that seismic methods have the 
widest applicability in different geological environments and provide the highest spatial 
resolution for leak detection.  Therefore we selected seismic methods for further 
investigation in this project.  Though technically capable of monitoring CO2, the routine 
application of conventional seismic methods faces the challenge of routine weekly or 
daily monitoring.  A new paradigm for seismic monitoring is required. 

Once seismic was chosen, our project then focused attention on a simulation study of 
imaging strategy that could be implemented as a true 4-D monitoring scenario, in this 
case, primarily for depleted oil and gas fields or saline aquifers.  We use the best 
knowledge for the changes in bulk rock properties caused by the injection of CO2.  The 
flow of our project activities is illustrated in Figure 1.2. 

Seismic

Rock

Propert ies

Seismic

Simulat ion

Subsurf ace

Imaging

Time-dependent

Reservoir

Condit ions

Leak

Detect ion

 
 

Figure 1.2:  The development of seismic monitoring strategies involves three tasks: Rock 
properties analysis, survey simulation, and imaging.  To test the approach, one could use time-
dependent flow simulation results or surrogate models. 
 

In seismic monitoring, we detect changes in acoustic impedance caused by changes in 
CO2 saturation in the formation.  Injected CO2 changes wave speed and density of water-
saturated geological formations.  Attenuation may change also but much less is know 
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about it and laboratory measurements are required before we can estimate the magnitude 
of the changes.  Seismic monitoring may detect these changes and then infer information 
about saturation or storage conditions.  Leak detection presents a major conflict in that to 
be effective, monitoring must be able to detect small temporal changes at small spatial 
scales in a volume that grows with time.  Seismic methods address this conflict by 
providing a variety of geometries, frequencies, and resolutions that are complementary 
and useful.  These methods include surface-based reflection seismic, borehole vertical 
seismic profiles and cross-well seismic, passive micro-seismic, and sonic logs.  Each 
represents a tradeoff between resolution and the volume of the subsurface sampled. 

 
In our opinion, the monitoring method must incorporate and utilize predicted 

behaviors say from flow simulators but must adapt to changing reservoir conditions say 
for leak detection.  In effect, these needs are met by combining reconnaissance surveys 
with rapidly deployable resources for high-resolution surveys when problems are 
detected or suspected.  To that end, we propose embedding the sources and detectors in 
and about the storage area, surface- and borehole-based seismic instrumentation.  The 
reconnaissance surveys, i.e., sparse spatial coverage, would be implemented daily to 
produce high temporal resolution but low-resolution spatial resolution for leak detection.  
If unexpected changes are detected in regions of the storage site, existing sources and 
detectors already embedded can be rapidly activated to produce a high spatial resolution 
of the targeted region.  Circular and cross arrays are proposed as examples of sparse 
observation systems.  We must take the advantage of the temporal evolution of the 
subsurface model and apply temporal regularization and other algorithms to improve the 
imaging quality of the spatial sparse data.  Further, through embedding we can employ 
low-power sources that radiate either continuous wave signals or coded waveforms.  
Before applying the proposed concepts to the field tests, we have performed numerous 
simulation studies.  These simulation results are presented in this report. 

 
Finally, we note that the applicability of seismic methods for CO2 monitoring at a 

specific site depends on the degree or magnitude of change in seismic rock properties, 
e.g., velocity, density, and attenuation.  For this reason, an understanding of seismic rock 
properties under the condition of CO2 saturation is of great importance to monitoring.  
Using well-established rock property models, we have performed sensitivity analyses to 
evaluate the feasibility of monitoring of CO2 storage.  We also initiated preliminary 
development of a pioneering laboratory method, differential acoustical resonance 
spectroscopy or DARS, for measuring the acoustic properties of small samples of rocks at 
low frequencies.  The current DARS implementation operates at about 1000 Hz on 1inch 
cylindrical plugs. 
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2.  Seismic Rock Properties 

Let us first investigate the seismic rock properties associated with CO2 saturation 
using well-established rock physics models.  The models we use to describe the seismic 
properties of formation rocks undergoing CO2 injection are fluid substitution from 
Gassmann [3] with stress-dependence from Eberhart-Phillips [4].  In seismic monitoring 
the changes we may detect are changes in velocity, reflectivity, and possibly attenuation.  
In general, the changes in seismic properties are a result of saturation changes and 
changes in the effective stress.  This study helps us understand if the seismic CO2 
monitoring is feasible.  Details from the feasibility study are given in Appendix A for 
seismic and the other geophysical monitoring methods. 

 
2.1  Seismic Model for Brine Aquifers and Depleted Oil and Gas Fields  

The seismic properties of the pore fluids that we are concerned with are density and 
the bulk modulus.  The properties of the brine and oil initially present in the formation 
are fairly insensitive to reservoir conditions while the seismic properties of CO2 are much 
stronger functions of pressure and temperature (Figure 2.1).  We use the relations 
collected by Batzle and Wang [2] to estimate the seismic properties of the fluids, e.g., oil, 
brine, and hydrocarbon gas.  Gassmann’s fluid substitution is a low frequency theory, 
which allows one to determine the effect of pore fluid changes on rock moduli.  Using the 
above effective fluid properties in Gassmann’s equation [3] along with the mineral 
modulus and the dry rock modulus, one can solve for the saturated moduli with 

 ( )
fl

fl

dry

dry

sat

sat

KK

K

KK

K

KK

K

−
+

−
=

− 000 φ
  and satdry μμ = , (2.1) 

where K0, Kdry, and Ksat are the mineral, dry rock, and saturated bulk moduli, respectively.  
φ  is the porosity and μ is the shear modulus, which is unchanged upon fluid substitution 
under Gassmann’s theory.  The saturated density also changes as a result of changing the 
pore fluid, and can also be calculated from 

 dryflsat ρφφρρ )1( −+=  (2.2) 

To model the stress-dependence of fractured rocks we use the results of Eberhart-
Phillips [4].  Their work is based on data gathered by Han [5] on the stress-dependent 
velocities of 64 sandstone samples.   In practice, stress-dependence will need to be 
determined as part of site characterization.  Eberhart-Phillips used only sandstone data, 
but a similar stress-dependence may occur in fractured carbonates.  They found the 
following empirical relation for compressional and shear velocity as a function of 
porosity, clay content, and effective pressure:   

 ( )eP

ep ePCV
7.16446.073.194.677.5 −−+−−= φ   (2.3a) 
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           ( )eP

es ePCV
7.16361.057.194.470.3 −−+−−= φ  (2.3b) 

In these two expressions, C is the mineral fraction of clay, Pe is the effective pressure 
in kbar and Vp and Vs are in km/s.  Figure 2.2 illustrates the effect of changing effective 
stress on a particular sample, StPeter1.  These data were collected for water-saturated 
rocks. 
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Figure 2.1:  Compressional velocities in (a) brine and oil, and (b) CO2 as a function of pressure 
and temperature. 
 

Combining Gassmann and Eberhart-Phillips allows one to predict the changes from 
increasing pore pressure and changing saturation with injection and compare the two 
effects.  Figure 2.3 and Figure 2.4 display the results of numerical experiments on a 
stress-dependent sandstone and a stiffer, unfractured carbonate undergoing CO2 flooding.  
The top curve in each plot is Gassmann, while each of the other curves assumes a linear 
increase in pressure with CO2 saturation.  Each curve begins at the same reference pore 
pressure and at zero CO2 saturation.   The first thing to notice is that the stiffer rock has a 
much smaller percent change in velocity, meaning that any changes will be much harder 
to detect.   Also important is that in the fractured sandstone approximately half of the 
compressional velocity change results from saturating changes and half from pressure 
effects, while the shear velocity is more affected by pressure changes, which agrees with 
published results [6]. 
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Figure 2.2:  Data from Eberhart-Phillips for the StPeter1 sample. 
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Figure 2.3: Calculated (a) compressional and (b) shear velocities with CO2 saturation using 
Gassmann fluid substitution and sandstone with stress dependence. 
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Figure 2.4: Calculated (a) compressional and (b) shear velocities with CO2 flooding using 
Gassmann fluid substitution for a stiff unfractured carbonate rock with stress dependence. 
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2.2  Lab Data 
Wang and Nur [7] conducted laboratory experiments on sandstone samples under 

hydrocarbon saturated and CO2 flooded saturations.  The samples were initially saturated 
with n-hexadecane then flooded with CO2 leaving approximately 30% residual oil.  The 
confining stress was kept constant at 20 MPa while the pore pressure was increased from 
approximately 0 to 18 MPa.  The results for the Beaver No.7 sample are shown in Figure 
2.5a.  Figure 2.5b shows the simulated results from our model.   

The compressional velocities display similar qualitative behavior while the shear 
velocities exhibit some striking differences.  From Gassmann theory we predict that the 
shear modulus is unchanged upon flooding, and any velocity change will be the result of 
density changes.  As less dense CO2 is displacing hydrocarbon oil we expect that 
flooding will always increase shear velocity.  The unexpected behavior of the shear 
velocity curves in the lab data can be attributed to high frequency viscous effects; 
Gassmann is a zero frequency equation and cannot always describe sample behavior at 
laboratory frequencies.  Measurements made at field frequencies are expected to show 
more Gassmann like behavior. 
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Figure 2.5: A comparison between (a) lab data from Wang [5], Beaver No. 7 and (b) our stress-
dependent fluid substitution model.  Black lines are isotherms for hydrocarbon saturated rocks 
and blue lines are isotherms for CO2 flooded rocks.  Confining pressure for all plots is 20 MPa. 
 
2.3  Reservoir Scale Simulations 

Figure 2.6 shows impedance and reflectivity images that are created according to our 
simple injection model (Figure A-1 in Appendix A).  Using the reflectivity time-series 
and a source wavelet in a convolution model we can create synthetic seismic reflection 
images (Figure 2.7).  In these images we can clearly see the reflector pull-down (Figure 
2.7b) from the lower velocities in the CO2 saturated region and the bright spot associated 
with the presence of CO2 (Figure 2.7c).   

 
Three of the principal seismic methods being considered for monitoring sequestration 

are reflection seismic, velocity tomography, and microseismic.  Reflection seismic and 
crosswell tomography are both expensive, high-resolution techniques.  Crosswell seismic 
imaging techniques have been employed before to monitor CO2 injection in EOR at the 

(a) (b) 
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McElroy Field in West Texas.  The seismic survey and the accompanying rock physics 
study showed that a several percent change was both present and detectable [6, 8, 9] 
using tomographic techniques.   
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Figure 2.6: This compressional wave impedance model (a) of the reservoir has bounding shale 
layers.  In this case the only significant and detectable contrasts appear at the sand shale interface 
because of the smooth velocity variations inside the reservoir.  (b) “Reflectivity series” in time for 
the impedance model after 10 years does show a velocity pull down die to the CO2. 
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Figure 2.7: (a) baseline, (b) repeat, and (c) differential synthetic seismic images produced using a 
convolution model applied to the CO2 impedance model. 

 

Micro-seismic monitoring involves using fixed geophones to continuously monitor a 
formation, providing a real-time image of CO2 movement.  This is a relatively 
inexpensive passive technique, which detects elastic waves resulting from fracture 
formation or reopening associated with the injection.  Fracture formation is, in turn, 
strongly dependent on pressure changes and rock type, so it may only be useful in low 
permeability, low porosity rocks where significant pressure changes are expected to occur 
[10]. 

From the rock physics modeling discussed previously (Figure 2.3), the bulk of the 
velocity changes resulting from saturation effects occur with only a small amount of CO2 
in the pore space.  This means that differentiating 20% saturation from 60% saturation 
will be much more difficult than detecting the presence of CO2.  For this reason the 
principal usefulness of seismic monitoring will be in leak detection and for monitoring 
CO2 migration rather than mass balance.  Seismic should be able to detect thin layers of 
CO2 [11], meaning that migration paths should show up clearly in a reflection survey and 
that presence of CO2 in overlying aquifers should be easily detectable.   

(a) (b) 

(a) (b) (c) 
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Both pressure and saturation effects will be more noticeable in softer rocks, but 
nonetheless seismic is still the most viable technique for most settings.  Changes in 
seismic properties are not very dependent on initial pore fluid so there is little difference 
between its use in aquifers and depleted oil fields.  The presence of hydrocarbon gas in 
the pore space, however, may render seismic monitoring useless.  The large initial drop in 
velocity with increasing CO2 saturation is a result of the high compressibility of the CO2 
making the effective fluid have more gas-like compressibility.  If hydrocarbon gas is also 
present, the effective fluid already has gas-like compressibility and the addition of CO2 
may not have any noticeable effect. 

 
2.4  Rock Properties from Differential Acoustic Resonance Spectroscopy 

Laboratory measurement on rock properties helps to interpret field data.  However, 
the existing laboratory studies [6,7, 38] on effects of CO2 saturation are quite limited.  
Another problem with existing lab measurements, including those discussed above, is the 
gap between the lab frequency (~500 kHz) and the field frequency (~50 Hz).  When we 
apply the laboratory estimates to field measurements of seismic velocity or attenuation to 
CO2 saturation, this frequency gap may lead to problems. 

 
The objective of this task is to measure the acoustic properties of small samples of 

rock in the laboratory at frequencies nearer to the field seismic.  We use a unique 
laboratory method, called Differential Acoustic Resonance Spectroscopy or DARS [39, 
40], which makes low frequency measurements on rock properties for a small sample.  
DARS provides estimates of sample compressibility (κ ), inertial density ( ρ ), and quality 
factor (Q).  These parameters can be interpreted in terms of changes in the fluid and flow 
properties of a porous medium.  Moreover, DARS is ideally suited for irregularly shaped 
samples such as cuttings or odd shaped pieces of coal.  Despite these advantages, DARS 
is a relatively new method and must be further developed if it is to be used for these 
purposes. 

 
DARS exploits the perturbations in the resonance frequencies of a fluid-filled cavity 

to estimate the acoustical properties of a sample loaded in the cavity.  In our proof-of-
concept system, we use a cylindrical cavity of the type illustrated in Figure 2.8.  This 
system has a resonant frequency around 1100 Hz and can be used with samples as small 
as 1 cc.  In the following, we give a brief explanation of the DARS concept and then 
show some results.   

 
Assume that a fluid-filled cavity has an angular resonant frequency 0ω .  When a 

sample is loaded into the cavity, the resonant frequency is changed to be 
sω .  Figure 2.9 

shows two DARS resonance spectra that correspond to cases, i.e., with and without 
sample.  The relationship between the frequency change and the sample properties can be 
described, to first order, by the perturbation equation [41]: 
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where 
    
δρ = ρs − ρ0( ) ρs ; 

    
δκ = κ s −κ0( ) κ0 ; 

  
f = f ( x, y, z)dV

Vs

∫∫∫ /Vs;   p  and   u are the 

corresponding acoustic pressure and particle velocity of the fluid inside the cavity; Γ and 
Λ  are constants for a given cavity; sV is the sample volume, and cV  is the cavity volume.  

Here 0ρ  and sρ  are fluid and sample densities; 0κ  is the fluid compressibility defined by 

    κ 0 = 1/( ρ0v0
2 ) ; and sκ  is the sample compressibility given by 

  κ s = 1/[ρ s(v p

2 − 4v s

2 / 3)] , 

where 
  
v p  and   vs  are the P- and S-wave velocities of the sample.  The frequency change is 

different for different sample locations in the cavity; therefore, multiple measurements in 

different locations can be used for finding both δρ  andδκ .  Unknown constants Γ/
2

p  

and Λ/
2

u  in equation 1.4 can be determined with known samples through a calibration 

procedure.  The quality factor of the cavity can be obtained from 
 

Qc = f /W ,     (2.5) 
 

where  f  is the resonance frequency and W is the linewidth of the resonance curve.  The 
sample quality factor sQ can be derived from cQ and equation 1.4 by introducing complex 

frequency, complex compressibility, and complex density [39].    
 
We used equation (1.4) to estimate the compressibility for five solid or impermeable 

samples and eight permeable (or porous) samples.  The results for impermeable samples, 
listed Table 1.1, show that the DARS estimation agrees well with the ultrasonic (~1 MHz) 
measurements as expected.  However, the results for the permeable samples, listed in 
Table 1.2, shows that the DARS estimation differs with the ultrasonic estimate, and the 
difference between the two measurements seems depending on the sample permeability.  
This observation lead us to a new method for permeability measurement.     
  

 
Figure 2.8: Diagram of DARS setup.  It includes computer-controlled sample positioning and 
swept frequency data acquisition.  The cylindrical cavity with two ends open is in a tank filled 
with fluid.   



 13

 
 
 

 

 

 

 

 

 

 

 

 

 
Figure 2.9: DARS resonance spectra.  The perturbation of a small sample causes both the 
resonant frequency and peak width changed. 
 

 
Table 1.1 Acoustical properties of five solid materials. 
 
 ρ (kg/m3) vp (m/s) vs (m/s) κultrasound (GPa-1) κDARS (GPa-1) 

Aluminum 2700 6400 3093 0.01334 0.01351 
Teflon 2140 1404 750 0.3831 0.3788 
Delrin 1420 2360 1120 0.1808 0.1838 
PVC 1380 2293 1230 0.2237 0.2257 

Lucite 1180 2692 1550 0.2096 0.2096 

 
Table 1.2 Acoustical properties of eight porous rock samples 

 
 

We introduced the concept of effective compressibility and viewed the estimate from 
DARS as effective compressibility when the sample drained.  Then we used dynamic 
diffusion to model flow in the sample.  With these considerations, effective 

 ρ  
(kg/m3) 

φ 
(%) 

K  
(mD) 

vp  

(m/sec) 
vs 

(m/sec) 
κultrasound  
(GPa-1) 

κDARS  
(GPa-1) 

Berea 15 2287 20.85 370 3530 2008 0.06172 0.2336 
Y.Berea 7 2398 28 6000 3425 1733 0.05397 0.3401 
Boise 8 2419 12 0.9 3593 1852 0.04957 0.1165 
Chalk 2088 34.5 2.1 3125 1650 0.078 0.08197 
Coal 1133 1.9 0.1 2075 890 0.2717 0.277 
Granite 2630 0.1 0 5280 2903 0.02284 0.02308 
Sandstone 1 2152 28.3 4200 3115 1411 0.06588 0.35088 
Sandstone 2 2210 24.9 1850 3265 1641 0.06398 0.31153 
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compressibility eκ can be theoretically predicted by following relationship (see Appendix 

F for the derivation): 

 
1

1
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2

+

−
+=

L

L
f

ue
e

e

L α

α

α
κφ

κκ , (2.6) 

where uκ is undrained compressibility (see explanation below), φ  is sample porosity, 

fκ is fluid compressibility; Diωα = , and L is sample length (see Figure 2.10).  Here 

1−=i , ω is angular frequency, φηβ/kD =  is diffusivity, k  is sample permeability,η  
is fluid viscosity, and β  is the compressibility factor involving both the fluid and the 

solid matrix simultaneously.  If we use DARS to measure eκ  and uκ , then equation (2.6) 

can be solved for α  and D.   When φ , η  and β are known from independent 
measurements, permeability can be obtained from D.   

 
An experimental procedure was designed to measure eκ and uκ with DARS, and then 

for permeability estimation through equation (2.6).  Figure 2.10 shows the procedure 
sample preparation for this experiment.  Terms “drained” and “undrained” refer to the 
sample surface boundary conditions.  In the drained condition, the sample has a partially 
or fully open flow surface, so that fluid can freely flow across the boundary during the 
DARS measurement.   In the undrained condition, the sample surface is sealed or fully 
closed and no flow crosses the sample surface.   Using drained and undrained samples, 

eκ and uκ can be obtained from two DARS measurements.  Table 1.3 shows the 

permeability estimate with DARS for 17 rock samples.  Table 1.3 has also presents 
comparisons between the DARS permeability and standard gas-injection permeability for 
all 17 samples.  The cross-plot in Figure 2.11 is the graphical comparison of two 
measurements.  Results from the two different methods are consistent and demonstrates 
how the DARS acoustics measurement can be used to estimate permeability.  Future 
work in this area is to compare permeability to acoustic attenuation and to compare 
acoustical properties with changes in saturation.    
 

 
 
 
 
 
 
 
 
 
 
Figure 2.10: Sample surface boundary configuration.  Undrained sample has a completely sealed 
surface.  Drained sample has its cylindrical surface sealed and its two ends open.  The sealing 
material is epoxy resin. 
 

(a) Undrained (b) Drained 

2L 2L 
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Table 1.3:  Permeability of 17 rocks estimated by DARS and direct gas injection, respectively. 
 

 kgas (mD) kDARS (mD) gasDARSgas /k)k(k −  

SSA4 361 335 7% 
SSB7 2747 2754 -0.  3% 
SSC5 0.8 0.7 12% 
SSF2 2669 2762 -3% 
SSG1 1862 1659 10% 
Chalk3 1.08 1.12 -3% 
YB3 181 170 6% 
BEN28 1149 1070 6% 
BIN21 212 206 3% 
BIP14 315 345 -9% 
CAS17 5 3.1 38% 
COL25 0.7 0.05 93% 
FEL37 9 4.5 50% 
NIV45 8055 7240 10% 
QUE10 2194 1950 11% 
UNK51 0.9 0.1 89% 
VIF02 12809 9009 29% 
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Figure 2.11: Comparison of the permeability of 17 samples estimated from DARS drained 
measurement and measured by direct gas injection. 
 

In summary, we have successfully applied our proof-of-concept DARS system for 
compressibility and permeability measurements.  For the application to CO2 monitoring, 
the effects of CO2 saturation on rock properties must be studied.  Next, we will design a 
more advanced system based on the experience gained from current DARS.  The new 
DARS should be able to measure a porous sample with different CO2 saturation under 
different effective pressures and temperatures.   
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2.5  A Field Example of Coal Bed Methane 
We have investigated the seismic rock properties using lab measurements and rock 

physics models in previous subsections.  We have also been involved in a field seismic 
monitoring study on coal bed methane (CBM) production.  The coal bed is an important 
option for CO2 sequestration.  From this field study, we have gained the knowledge on 
how certain seismic rock properties change with gas saturation and effective pressure in 
coal beds.  We here present the main result from view of seismic rock properties and then 
give more details of this monitoring study from different views in Appendix E.   

 
This CBM project was conducted in Powder River Basin, Wyoming.  The goal of this 

project is to boost the CBM production by a dewatering process that reduces the pore 
pressure and increase gas saturation in the coal bed.  Three crosswell seismic surveys 
were acquired in 2002, 2003 and 2004 to monitor the subsurface formation changes 
caused by pumping out the water (or dewatering) from coal beds.  Figure 2.12 shows the 
zero-offset data of the time-lapse crosswell surveys.  The red makers in this figure are 
picked from Survey 1 and then projected into Surveys 2 and 3.  We use them to compare 
the direct P-wave travel times visually and then infer the trend of P-wave changes.   
 

  
Figure 2.12: A display of zero-offset sections for the three data sets showing evidence of 
dewatering-induced changes within the coal bed and repeatability of events outside the coal bed. 
 

Survey 1 

Survey 2 

Survey 3 

Coal zone 

Survey 1 

Survey 2 

Survey 3 



 17

 
Figure 2.13: P-wave velocity in saturated coal as a function of differential pressure. 

 
It can be seen from Figure 2.12 that the direct P-wave travel time within the coal zone 

changes from survey to survey.  The first repeated survey of 2003 shows longer travel 
time than the baseline survey of 2002, which means the P-wave velocity is reduced 
during this dewatering period.  However, the second repeated survey of 2004 shows 
shorter travel time than the first repeated survey and similar travel time as the baseline, 
which means the P-wave velocity increases and goes back the baseline velocity during 
this dewatering period.     

 
Figure 2.13 gives a possible explanation on these interesting up-down changes in 

velocities.  The P-wave velocity changes are caused by a mixing effect of gas saturation 
and pore-pressure changes.  At the beginning of the dewatering, the gas saturation 
increasing is dominant and reduces overall velocity.  At later time, the dewatering mainly 
increases differential pressure.  Differential pressure is defined as confining pressure 
minus pore pressure.  Higher differential pressure causes the closing presumably layer 
cavities or air-filled cracks[34] in the coal, which makes the wave travel faster.  This is 
may explain the P-wave velocity increase from Survey 2 to Survey 3.  The tomogram 
shows the P-wave changes caused by the gas saturation is about 5% (see Appendix E).   
 

3.  Concepts for Continuous Monitoring 

We expect the storage site to experience 3-4 distinct phases of operations: Site 
characterization, injection and post-injection, and closure as illustrated in Figure 3.1.  
Moreover, monitoring must be planned for the varying needs of these different phases 
and must adapt to unpredictable reservoir conditions.  The cost of monitoring should 
decrease with time and eventually go to zero as illustrated, though the details will vary 
from one site to another.  Moreover, the subsurface response to CO2 is never fully 
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predictable; therefore, in order monitor the pathways properly, we may need to adjust the 
data acquisition configuration from time to time. 

 

 
 

Figure 3.1: Three phases of a storage project.  The monitoring costs should decrease with time.  
The cost curves (red and purple) represent two possible procedures. 

 
Monitoring builds from the high-resolution baseline model that is developed during 

the characterization phase.  An example of this can be seen in the Sleipner images shown 
in Figure 3.2.  The Sleipner field, located offshore Norway in the North Sea, is 
considered to be the first pure sequestration project in the world.  The Saline Aquifer CO2 
Storage project (SACS) is responsible for monitoring the injection.  SACS has almost 
exclusively used seismic monitoring and produced these high quality time-lapse images 
that highlight changes associated with the presence of CO2.  Two subsurface images and 
their difference are shown in Figure 3.2.  The outline of the CO2 plume is clearly seen in 
addition to details believed to be CO2 below shale barriers.  These images are good 
examples of (relatively) high spatial resolution but low temporal resolution.  Moreover, 
the images provide excellent qualitative snapshots of the reservoir changes but poor 
quantitative estimates of the magnitudes of the changes.  Although the stratigraphic 
details seen in these images provide information about storage, they are believed to be of 
much less interest for the containment assessment and the “safety case” that will be 
required at a typical storage site. 

 
A monitoring strategy must contribute to the safety case that will be required for 

licensing the site.  Such monitoring activities are expected to be most active during the 
injection phase, decline during post-injection, and possibly end altogether during the 
closure phase as illustrated by the solid red line in the figure above.  If, however, leaks 
are detected or suspected, monitoring resources must be available to address 
identification and mitigation of possible containment problems, as illustrated by the dash 
red line in Figure 3.1.  In fact, closure may be defined by the significant curtailment of 
monitoring activities.  For these reasons, monitoring serves two important purposes: (1) 
provides advance warning of imminent problems such leaks; and (2) confirms predicted 
reservoir behavior and provides data for optimizing efficiency.  To this end, a practical 
subsurface monitoring plan should utilize information from other sources such as 
predictions from flow simulators and observations from wells. 

 
These monitoring objectives can be met by combining two complementary types of 

subsurface imaging: (1) Reconnaissance surveys yield high temporal resolution for daily 



 19

or weekly updates; (2) Easily deployed high resolution surveys in response to 
reconnaissance results.   These two imaging concepts can be implemented by embedding 
the sources and detectors in and about the storage area with surface-based and borehole-
based instrumentation.  The reconnaissance surveys for leak detection would be 
implemented, using sparse spatial sampling, to produce high temporal resolution, i.e., 
daily or weekly, but low-resolution spatial resolution.  Circular and cross arrays are 
proposed as examples of sparse observation systems.  If unexpected changes are detected 
in, existing sources and detectors already embedded can be rapidly and easily activated to 
produce a high spatial resolution image of the suspected region.  Such a monitoring 
strategy must take advantage of the temporal evolution of the subsurface model and apply 
temporal regularization and other algorithms to improve the quality of the images 
generated from sparse datasets.  Furthermore, by embedding the sources we can employ 
low-power transducers that radiate either continuous wave signals or coded waveforms as 
illustrate din Figure 3.3.  These concepts provide numerous opportunities and challenges 
in imaging research, e.g., sparse data imaging, methodologies for dynamic imaging, 
incorporation of flow predictions, and continuous-wave signal processing.  Before 
applying the proposed concepts to the field tests, we must perform numerous simulation 
studies to test their strength and weaknesses.  Some of these simulation results are 
presented in the following sections. 

 

 
 

Figure 3.2: Time-lapse seismic data from SACS yield high-resolution but qualitative difference 
images. 
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Figure 3.3: Low-power sources may be used to generate continuous signals that are subsequently 
correlated to produce sharp pulse-like wavelets. 
 
4.  Special Acquisition Configurations for Continuous Monitoring  

We have described the basic concepts for continuous monitoring in the previous 
section.  Here we explore five special seismic acquisition geometries that have the 
potential for continuous subsurface monitoring.  These proposed observation systems use 
seismic detectors and low-powered sources permanently embedded in the near surface 
and in boreholes in order to reduce operation costs and improve repeatability.  Simple 
and composite configurations are made with acquisition units that can be adaptively 
added and removed during the monitoring phase.  We present these special acquisition 
configurations in this section, and then perform computer simulations in next two 
sections. 
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4.1  Circular Array  
To monitor CO2 injection in a 3-D storage formation, we can use 2-D arrays on the 

surface to acquire seismic reflection data.  With such arrays the reflection data can be 
processed to produce a 3-D subsurface image.  Figure 4.1(a) shows a circular array 
surrounding the injection borehole.  Overlapped red dots and blue small circles represent 
sources and receivers, respectively.  This simple 2-D array configuration can record 
reflection seismic data for full 3-D subsurface imaging as shown in Figure 4.1(b) where 
reflection points corresponding to this acquisition geometry are displayed.  It can be seen 
that the reflection coverage is very good, and a subsurface image can be obtained within 
the entire circle, though it will be a low-fold survey.  Because the data are continuously 
acquired, the low-fold spatial coverage can be compensated by the abundant time-lapse 
data if special imaging algorithms are developed for sparse monitoring data [e.g., 42, 43, 
44].   

We can also use multiple circular arrays to improve the fold and subsequent image 
quality.  Figure 4.2(a) illustrates a case of two arrays.  The total reflection coverage 
shown in Figure 4.2(b) results from two independent arrays plus the cross recording 
between the two arrays.  This configuration is flexible and we could add as many circular 
arrays as we need to reach a trade-off between cost and image quality.   In geological 
CO2 sequestration, the storage volume grows as the injection continues.  With this 
configuration, we can adaptively add more arrays to track the CO2 plume growth. 

 
 
 
 
 

 
 
Figure 4.1:  (a) A circular array around an injection borehole; (b) the coverage of reflection 
points.   
 

(a) (b) 
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Figure 3.2:  (a) Two circular arrays; (b) the coverage of reflection points, which is the result of 
two independent arrays plus the cross recording between the two arrays.  The fold coverage is 
significantly improved by an additional array.    

 
 

4.2  Simple Cross Array 
A simple cross array (or cross-spread) is shown in Figure 4.3.  The source array (red) 

and the receiver array (blue) are orthogonal.  The shaded area shows the reflection points 
covered by this acquisition geometry.  This simple configuration provides a low-fold true 
3-D seismic survey [27, 28] as well, but the coverage is reduced in comparison to the 
circular array.  This sparse 3-D survey does not yield very high resolution, but it may 
meet the requirements for CO2 sequestration monitoring.  Wapenaar [29] presented an 
analysis on the resolution and amplitude behavior of prestack migration using cross array 
data.  Bouska [30] and Al-Ali [31] provided some field examples on the resolutions of 
sparse 3-D data.   
 

 
 
 
 
 
 

 
 

 
Figure 4.3: Simple cross array.  Red line is a source array; blue line is a receiver array.   
 
4.3  3-D Cross Array 

In a CO2 storage project, at least one injection borehole is available.  Taking the 
advantage of using this borehole for monitoring, a vertical detector array may be 
emplaced in this borehole (Figures 4.4 and 4.5).  Data recorded in the borehole are 
Vertical Seismic Profiles (VSP).  The combined surface data and the VSP data improve 
the image quality.  VSP data itself can be used to detect the top of CO2 plume with higher 
accuracy.  VSP data also has richer wavefields, including both upgoing and downgoing 
events that provide different views of the targeted zone.  Typical VSP data contains high-
quality S-waves  as well as P-waves.  Because P-wave and S-wave data have different 

X 

Y 

(a) (b) 
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responses to CO2 saturation and pressure, using both provides a means of distinguishing 
saturation changes from pressure changes. 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.4: 3-D cross array.  A vertical receiver array is added to the surface cross array of 
sources (red) and detectors (blue).   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.5: The surface cross array records reflection seismic data (a).  The vertical receiver 
array record both reflection and transmission data (b). 
 
4.4  Composite Configurations 

We may add more source and receiver arrays and use a composite configuration as 
shown in Figure 4.6.  Al-Ali [31] discussed a similar configuration and used a field data 
set to illustrate the advantages of this configuration.  Once again, we propose to add a 
vertical receiver array to several primary surface arrays.  With this geometry, high quality 
3-D VSP data will be recorded too.  The combined datasets provide significant data for 
high performance time-lapse monitoring.   
 
 
 

X 

Y 
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Figure 4.6: 3-D Composite configuration.  In addition to multiple cross arrays, one more source 
arrays are placed parallel to the receiver arrays. 
 
4.5  Adaptive Configurations  

The seismic monitoring procedure may last for many years.  During this long time 
period, the CO2 plume may change dynamically, and pathways are not fully predicable.  
We should adaptively reconfigure the observation system as illustrated in Figure 4.7.  
Simple cross arrays are used as elements in this illustration.     
 
 
 

 
 
 
Figure 4.7: As the CO2 plume grows, the array is moved or more arrays are added to track the 
plume front. 
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5.  Full-wave Seismic Simulation 

To examine the realistic seismic survey, we must simulate the full seismic wavefield 
with realistic frequency content, realistic rock properties, a realistic source and receiver 
geometry.  For this purpose we developed 3-D modeling codes that capture increasing 
complexity and more and more realistic physics of seismic wave phenomena.  The suite 
of modeling codes is described in Appendices B and C.  One of modeling algorithms in 
particular, a 3-D finite difference (FD) method is used here to simulate the various 
acquisition configurations for our monitoring strategy.  Synthetic data calculated in this 
simulation study will be used to see if the CO2 in the subsurface is detectable.  As listed 
in Appendix B, we have five 3-D FD programs for different media.  In this section, we 
use the acoustic FD program for the array simulation.  The acoustic wave field is the 
simplest yet it captures the wave behavior relevant to the array study.  The models 
developed in the project may be used to carry out more complicated simulations that 
include P-waves, S-waves, and attenuation.   

 
5.1  Model and Data   

Assume that we have a storage project as shown in Figure 5.1.  A layered 3-D grid 
model with a fault is created according to the geological model shown in Figure 1.2.  We 
place 107 receiver arrays on the surface and one receiver array in the injection well.  
There are total 428 sources in four source arrays placed on the surface.  At first, we 
calculate relatively dense 3-D seismic data.  Then during data analysis, we extract 
different subsets from the original data volume to test different acquisition configurations.   

 
The CO2 injected into the formation would cause P-wave velocity decrease.  The 

velocity changes will result in travel time, amplitude and reflectivity changes in seismic 
waves.  These seismic attribute changes are the observed data that will be used to image 
the CO2 storage site.  To simulate different injection stages, we create four time-lapse 
models shown in Figure 5.2.  The CO2 plume grows with time.  The objective of 
monitoring is to track the plume front and detect possible leaks along the fault. 

 
The FD program was run on the CEES computer cluster at Stanford Center for 

Computational Earth and Environment Science.  In FD simulation, we had to run the 
program for each shot.  The CPU time with an Opteron processor is 75 minutes for one 
shot.   There are five models and 428 shots for each model.  The total CPU time is 2,675 
hours or 111 days, thus requiring 64 CPUs from the CEES cluster.  The actual running 
time of the simulation was ~3 clock days.  The file size of the simulated seismic data is 
168 GB. 
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Figure 5.1: The model used for the FD simulation.  The fault in this model will be used to test the 
leakage detection.  Blue lines are receiver arrays.  There are 107 surface receiver arrays and 1 
vertical receiver array in the injection borehole.  Red lines represent source arrays.  Three of the 
source arrays are orthogonal to the receiver arrays, and one is parallel to the receiver arrays.  Grid 
sizes of this model are Nx = Ny = 361 and Nz = 271.  P-wave velocities, from top layer to bottom 
layer, are 3500, 3700, 3900, 4500, 3800, 4300 m/s.  Densities are 2150, 2180, 2200, 2230, 1800, 
and 2200 kg/m3.  Ricker wavelet with a center frequency of 50 Hz is used in this FD computation. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Figure 5.2: Time-lapse CO2 injection models, M1, M2, M3, and M4.  CO2 saturated area (red color 
in the center) has a velocity 3% less than the background velocity.   
  

M1 M2 

M3 M4 
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For a quick check on our big data volume, we extract two orthogonal zero-offset profiles 
form the data.  Figure 5.3 shows the zero-offset synthetic data calculated from baseline 
model (M0).  The reflections in the profiles have similar shapes as the interfaces seen in 
the model.  Figure 5.4 shows the amplitude differences between two time-lapse surveys.   
The CO2 plume is clearly seen from the data display. 

 
Figure 5.3: Two zero-offset gathers extracted from the whole data volume of the baseline survey 
(M0).  Five reflections correspond to interfaces in the model.  Diffractions from the fault can also 
be seen.   
 

 

 
Figure 5.4: Amplitude differences between baseline and time-lapse surveys.  (a) Difference 
between M1 and baseline; (b) difference between M2 and M1; (c) difference between M3 and M2; 
and (d) difference between M4 and M3.   

(a) (b) 

(c) (d) 
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5.2  An Example of Cross Array 
We now extract a subset from the simulated data and study the possibility to monitor 

CO2 storage and detect leaks using a cross array.  Figure 5.5 shows a cross array that is 
one of the special configurations discussed previously in Section 3.  The cross array is a 
simple layout that can acquire true 3-D seismic data.      
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.5: A simple cross array used for the CO2 monitoring.  This configuration is the basic 3-
D seismic acquisition geometry.  The red line is the source array and the blue line is the receiver 
array.    
 

The cross array data can be arranged as a 3-D volume.  In this simulation, we use 107 
sources and 107 receivers.  The time window of each seismic trace is 1700 points.  
Therefore, we have a 3-D data cube with the size of 107x107x1700.  We can inspect the 
data cube with different slices.  Figure 5.6 shows a time slice, a common source gather, 
and a common receiver gather of the baseline survey.  We can see five events from the 
data, which are reflections from five interfaces.  The reflection exhibits different shapes 
on different slices.  Reflections appear as circles on time slices and as hyperbolas on X or 
Y slices.      

 
When CO2 is injected into the formation, the seismic velocity would decrease slightly 

in the saturated volume.  This velocity change causes the travel time increase and 
reflection amplitude changes.  If the travel time change and the reflection amplitude 
change are observable, then these observed changes could be used to detect and monitor 
the CO2 storage conditions.  In this simulation we only investigate the reflection 
amplitude differences caused by the CO2 saturation.  The effects of the travel time change 
will be studied in the future.   
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Figure 5.6: Slices cut from the 3-D data cube calculated from baseline model (M0).  (a) A time 
slices at time = 0.2856 sec that is just above the fourth refection.  The CO2 storage is located in 
the fifth layer.  Circles on the time slice are reflections.  Yellow lines show where X and Y slices 
are cut.  (b) A Y slice (common receiver gather) cut in the middle of data cube.  The yellow line 
indicates where the time slice is.  X coordinates on this slice are locations of sources.  (c) An X 
slice (common source gather).  The horizontal coordinates here are locations of receivers. 
 

The amplitude differences are obtained by subtracting a time-lapse survey from the 
baseline survey.  Figure 5.7 shows the amplitude differences between first time-lapse 
survey and the baseline.  Because the CO2 is injected in the 5th layer just below the 4th 
interface, the seismic reflections from interfaces 1–3 are not affected by the CO2 
saturation.  The amplitude change starts from reflection of 4th interface where CO2 
storage is.  The CO2 plume grows with time.  Figure 5.8 is anther comparison between 
baseline and a new survey acquired at time 2.  It can be seen that the amplitude difference 
becomes larger due to a larger CO2 storage plume.   

(a) Time Slice 

(b) Y Slice (c) X Slice 
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Figure 5.7: Amplitude difference between baseline survey (M0) and the first time-lapse survey 
(M1).  Seismic reflections observed on the surface can show where the top of the storage is.     
 
 
 
 

(a) Model (b) Time Slice 

(c) Y Slice (d) X Slice 
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Figure 5.8: Amplitude difference between baseline survey (M0) and anther later survey (M3).  As 
the CO2 saturated area grows larger in this model, the amplitude difference becomes bigger too.       
 

To study if CO2 leaks along a fault could be detected and how the aspects of the leaks 
appear in the cross-spread data, we create a model as shown in Figure 5.9.  CO2 leaks 
change the seismic velocity near the fault.  The velocity perturbation causes some seismic 
diffraction.  The time slice in Figure 5.9 clearly shows the diffraction pattern related to 
the leaks along the fault.  The special circular pattern is interesting.  In the field data, the 
noise is always there, but it is random and should not generate anomaly like this pattern.  
This simulation shows a simple cross-spread may be capable to detect the possible leaks 
by looking for this kind of circular patterns.   

 

(a) Model (b) Time Slice 

(c) Y Slice (d) X Slice 
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Figure 5.9: Amplitude difference between baseline survey (M0) and a much later survey (M4).  
CO2 starts leaking along the fault in this model.  The time slice is cut at 0.2764 sec as indicated 
on the Y slice.  A circular anomaly above where the leakage occurs can be seen from this time 
slice.  It is also interesting to see that the circular contours have a linear discontinuity highlighted 
by the dashed line.  This discontinuity is caused by the fault.          

(a) Model (b) Time Slice 

(c) Y Slice (d) X Slice 
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6.  Subsurface Imaging with Simulated Data for Circular Array 

In many cases, it is not enough to look only the raw data like we did in previous 
section.  We need to use the data for surface imaging and understand the storage status 
directly from the subsurface images.  We now use a simple model problem shown in 
Figure 5.1 for a subsurface imaging simulation.  The model has a constant wave velocity 
and two reflectors.  CO2 is injected into the formation between these two reflectors.  A 
circular array (see Section 3.1) is placed on the surface around the injection borehole.  
Two time-lapse surveys are simulated with the finite difference method.  The CO2 
saturated area has two different sizes in these two surveys.   

 
We apply Kirchhoff prestack depth migration to these two 3-D data sets, respectively, 

and obtain two 3-D subsurface depth images.  The difference between two time-lapse 
images shows the injection activities.  Figure 5.2 is a slice cut from the difference image 
cube at the depth where injection occurs.  The difference indicated in this depth slice 
shows the expanding of CO2 saturated area, which is the same as the true model.  Circles 
appeared in this depth slice are migration artifacts due to this sparse circular acquisition 
geometry.  We hope that multiple circular arrays and more sophisticated imaging 
algorithms can reduce the artifacts.    
 

 
 

Figure 6.1: A simple mock-up of CO2 sequestration monitoring.  The light blue square between 
two reflectors indicates the CO2 injected.   
 

 
Figure 6.2: Depth slice cut from difference image cube. 

 

Difference caused 
by CO2 injection 
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7.  Dynamic Imaging 

In time-lapse monitoring the quantity of interest, e.g., seismic velocities, is slowly 
time-varying while the dynamics that govern the physics of the measurement, e.g., 
traveltimes, is spatial and essentially instantaneous in nature.  For this reason, traditional 
methods ignore the temporal aspect of the problem and solve the inverse problem 
independently for each time instant under the assumption that the data acquisition is also 
instantaneous.  There are other approaches [44, 45] to the time-lapse imaging.  Our 
approach is to use sparse time-lapse datasets and incorporate the slow temporal variations 
into the formulation and processing of the image.  We describe three dynamic imaging 
methods that can be used for our coupled spatio-temporal imaging problem: Kalman filter, 
recursive least squares and recursive re-weighted least squares, and temporal 
regularization. 

 
Suppose that we want to estimate the parameter of a dynamic model m that changes 

with time.  Let mi be the model at time it , i = 1,2,…, N.  Assume that the model 

parameter at 1+it can be predicted with the relation of the form  

    mi+1 = A imi + ηi ,  (7.1) 

where iA  is a transition operator that describes the temporal evolution of the model 

parameter and iη  is the prediction error that for now is Gaussian with zero mean and 

covariance  

 )(= T

iii E ηηQ . (7.2) 

The prediction filter would come from a flow simulation run on the high-resolution 
baseline model or from an evolution model derived from temporal history of the images.  
A general time varying imaging problem can be described by  

 iiii εmGd += ,  (7.3) 

where id  is the observed data and iG  represents the physical relation between the data 

id  and the model im .  The measurement error iε  is also assumed to be Gaussian with 

zero mean and covariance  

 )(= T

iii E εεR . (7.4) 
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7.1  Kalman Filters 
If iA  is known or can be estimated, we can obtain a general solution for the dynamic 

imaging problem using both model predictions and data.  One such solution is given by 
the Kalman filter [48] according to following procedure:  
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Here iC
~

 is the prediction of model covariance, iĈ  is the model parameter covariance 

updated with the data recorded in time instant it , priorm  is initial model, and priorC  is an 

initial covariance estimate.  The Kalman filter possesses two significant advantages: 
optimality in LMS sense and recursion.   

 
In spite of its widespread applicability, the Kalman filter still has some practical 

limitations.  First, it requires knowledge of iQ  and iR  at all times.  When these 

quantities are unknown, it is necessary to estimate them.  In some practical applications, 
however, it is hard to do this, and incorrect variance estimates significantly degrade the 
performance of the resulting estimate.  In order to overcome the resulting difficulties in 
applications of Kalman filtering, a recursive estimation procedure that does not require 
knowledge of the noise covariance is required.   

7.2  Recursive Least Squares and Re-weighted Recursive Least Squares 
The second method we consider is called recursive least squares (RLS).  In RLS, the 

model parameter at time it  is obtained by minimizing  

 .||||= 2

0=
jj

i

j

dmG −∑φ  (7.6) 

 Note that in equation 7.6 all the data recorded in previous time have the same weight in 
determining the estimate for the model im .  The solution is obtained by a recursive 

process:  
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This result is identical to a Kalman filter if IA =i  and 0Q =i in equation 7.5. 

 
A generalized RLS, called recursive re-weighted least squares (RRLS), can be 

obtained by introducing the concept of ``forgetting'' in which older data is gradually 
discarded in favor of more recent information.  In least squares method, forgetting can be 
viewed as giving less weight to older data and more weight to recent data.  The objective 
function is defined as  

 2

0=

|||| jj

ji
i

j

dmG −−∑λ , (7.7) 

where λ  is called the memory or “forgetting factor” and 1<0 ≤λ .  The scheme is also 
known as least-squares with exponential forgetting.  The model im  is calculated 

recursively as  
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We can define the memory of the algorithm as )1/(1= λμ − .  When 1=λ  (standard 
RLS) the memory is infinite, which means that all the data have the same weight in the 
current estimation.  If λ  approaches zero, the algorithm has little memory on the old data. 

 
7.3  Temporal Regularization 

Finally, and perhaps the simplest approach is to add temporal regularization to the 
conventional formulation of the inversion problem as follows.  Consider again the series 
of n datasets ( id ) acquired at n different times ( it ) but this time with different kernels iG .  

In the conventional case, this inversion is solved independently for each dataset by 
minimizing an objective function of the form  
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where D is a weighting operator and sλ is a regularization parameter.  The first term in 

equation 7.9 measures data misfit while second measures model length as modified by D.  
If D = I, then the resulting minimization of equation 7.9 is simply the damped least-
squares solution.  Neither of the terms in equation 7.9 couple solutions across multiple 
times.   

 
In the case of time-lapse monitoring, models will have temporal correlation.  Based 

on a straight-forward extension of Tikhonov regularization, we modify equation 7.9 to 
include temporal cross-coupling which minimizes the time-lapse change in some model 
attribute in addition to data misfit minimization for individual datasets.  Consider a 
combined objective function of the form 
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where iii ttt −=Δ +1 , and sλ  is a regularization parameter controlling the strength of the 

temporal constraint. 
 
In principle, the tomography operators used in the formulations presented above can 

be replaced with any other imaging operator, e.g., diffraction tomography or migration.  
In practice, however, considerable effort will be required to implement other more 
complicated operators.  Nevertheless, tomography is consistent with our strategy of low 
spatial resolution and high temporal resolution imaging. 

 
8.  Velocity Tomography with Temporal Regularization 

 

8.1  Traveltime Formulation 
As summarized above, we have multiple datasets recorded at different times.  In this 

section, we test the approach of temporal regularization as a way to implement a joint 
inversion.  We use a cross-well seismic geometry with synthetic and CBM field datasets 
to demonstrate temporal regularization.  First, we note that the velocity tomography 
problem is highly nonlinear, but solved in linear steps of ray tracing and inversion.  
Linearization results in the regularized linear tomographic system 
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where δτi are vectors of residuals of the traveltimes for each of the n time-lapse surveys, 
δmi are the perturbations of the slowness to be determined, δm=[δm1, δm1,…, δmn] and 
Gi are the tomographic matrices associated with each of the time-lapse datasets and 
models.  A schematic outline of the algorithm for temporal regularization is illustrated in 
Figure 8.1.  The problem is to minimize the combined objective function of the form 
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where iii ttt −=Δ +1 , and sλ  is a regularization parameter controlling the strength of the 

temporal constraint. 
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Figure 8.1: Outline of a temporal regularization algorithm 
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Minimizing equation 8.2 is equivalent to the least-squares solution of an augmented 
system  
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This formalism also provides a good approach to incrementally acquired seismic 
surveys where the survey geometry at any particular time step n is relatively sparse.  
Although independent inversion of a single survey might yield an image with very low 
spatial resolution, by jointly inverting a series of surveys we can effectively add spatial 
aperture in exchange for losing temporal resolution. 

 
To this point, our formulation has been relatively general with no assumption 

regarding the operation which G performs, the model parameterization represented by m, 
or the type of data stored as d.  We will now apply our formulation to the concrete 
example of seismic traveltime tomography with one temporal dimension and two spatial 
dimensions.  In this case we choose each m to be a rectangular mesh of homogeneous 
slowness cells while d is a vector of picked first-arrival traveltimes and G is the ray-path 
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matrix.  We use a split Laplacian operator (Dxx, Dzz) to allow anisotropic regularization 
with two spatial parameters (λsx, λsz) and two spatiotemporal parameters (λtx, λtz) for 
the respective terms in equation 8.5.  Regularization parameters are chosen by 
observation although use of the L-surface technique advocated by Brooks et al.  [46] 
would decrease the amount of manual tuning required in the inversion process.  The 
resulting coupled systems were solved using the LSQR algorithm [47]. 

     
8.2  A Synthetic Example 

For this synthetic experiment we generate four time-lapse models of a CO2 flood 
progressing through a permeable layer shown in Figure 8.2(a).  Data are synthesized for a 
cross-well geometry with 40 sources and 40 receivers evenly spaced near the right and 
left boundaries of the model, respectively.  Gaussian noise (~3%) is added to the 
traveltime picks for all four synthetic surveys.  The first survey is the baseline that has 
full coverage.  Three repeated surveys only have partial coverage as illustrated in Figure 
8.2(b).  Figure 8.3 shows the difference images reconstructed without using any temporal 
constraint.  In this case, the time-lapse images (or tomograms) are calculated 
independently from each partial survey, and then compared to the baseline image.  The 
difference images are the difference between time-lapse images and the baseline image. 
Clearly, these difference images are good representations of the true models.  Figure 8.4 
is the difference images obtained from joint inversion of multiple time-lapse datasets.  It 
can be seen, from Figures 8.3 and 8.4, that the joint inversion with a temporal constraint 
has clearly improved the difference imaging results, especially for this case of using 
incrementally collected time-lapse datasets.   

 
 

Figure 8.2: An incremental time-lapse acquisition example of cross-well geometry.  (upper) True 
velocity models; (lower) data coverage at different times. 
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Figure 8.3: Difference images without temporal constraint.  (upper) True models; (lower) 
temporally independent reconstructions from the independent partial surveys.   
 

 
Figure 8.4: Difference images with temporal constraint.  (upper) True models; (lower) joint 
temporally constrained reconstructions from time-lapse surveys.   
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Most traditional time-lapse processing techniques involve the solution of equation 8.1 
for each of the independent measurements and the temporal variations are obtained by 
subtracting the images.  Naive image subtraction tends to be sensitive to survey-to-survey 
changes in S/N ratio and variations in acquisition geometry, both of which can generate 
artifacts in the resulting time-lapse images and cross-equalization algorithms [49] are 
needed to match the geometry and signal characteristics of repeated surveys.  We believe 
that taking into account the temporal aspects during the time-lapse processing can 
improve the coherence between the images and may consistently counter irregular 
acquisition geometries.  In addition to fit the data and the spatial constraints, the 
additional constraints imposed by temporal regularization are imposed on the solution.   

8.3  Field Data Example 
We applied this spatio-temporal regularization scheme to coalbed methane production 

monitoring.  The observed data are three independent cross-well surveys recorded for the 
Big George coal in the Powder River Basin (WY) at different phases of methane 
production.  The three resulting tomograms are shown in figure 8.5.  We used the first 
derivative operator for spatial regularization and the temporal regularization operator is 
the difference between the model derivatives of consecutive surveys.  There is a clear 
though subtle decrease in velocity in the coal layer (1100 ft – 1200 ft) from the baseline 
to the second survey and then an increase in velocity in the third survey.  These changes 
are easily visible in Figure 8.6 where the difference tomograms with respect to the 
baseline survey are shown.  Notice that artifacts outside the low velocity coal present but 
considerably reduced by spatio-temporal regularization.  The initial velocity decrease in 
the coal is caused by methane desorption.  The subsequent increase in velocity is due to 
bulk hardening of the coal as pore pressure is further reduced due to furthering 
dewatering.  This result is consistent with the coal physics model discussed in Section 2 
above.   

 
 

Figure 8.5: Time-lapse velocity tomograms obtained through spatio-temporal regularization.  
(left) baseline; (middle) after 6 months; (right) after 15 months 
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Figure 8.6: Percent difference between the spatio-temporal regularized result shown in figure 8.5.  
Notice that the velocity decreased coal layer (1100-1200 ft) between survey 1 and 2, but then 
increased and became almost equal to the baseline velocity.   
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9.  Conclusions 

Our studies have shown that geological CO2 sequestration can be monitored by 
various geophysical methods, though seismic seems is most suitable because it is 
applicable to most any geological setting.  While it would be very difficult to accurately 
predict the absolute values of the seismic parameters at a specific site either before or 
during CO2 injection, a reasonable estimate of the time-lapse changes is more likely 
given a high-resolution baseline model.  Moreover, because we are most interested in 
monitoring CO2 containment, we need not to use regular and expensive 3-D seismic 
surveys designed to detect detailed geo-stratigraphy or structure of the CO2 plume.  
Moreover, subsurface CO2 demands periodic assessments at time intervals of weeks or 
days, not years as ordinarily used in petroleum applications.  This can be accomplished 
only with a new paradigm for seismic imaging.  On the basis of these considerations, we 
suggest a tradeoff between 3-D spatial resolution and temporal resolution.  This tradeoff 
may be accomplished through use of innovative data acquisition and data processing 
strategies discussed in this report.  For example, four 3-D sparse data acquisition 
configurations are proposed, along with a data processing sequence that leads to 
continuous monitoring.  Full wave field modeling was used to investigate these special 
acquisition and processing algorithms.  The simulated results are encouraging.  Field tests 
are needed to better understand their strengths and weaknesses.    

 
A new laboratory method, DARS, was used to investigate the acoustical properties of 

porous rocks at low frequency.  A coincidental finding of this research was that the 
DARS technique is useful at estimating the permeability of porous materials.  Data from 
a coalbed seismic monitoring project was used to test models for changes in seismic 
velocity with pressure and gas saturation.  These in situ observations confirmed the 
changes predicted by theory and that the observations can be reliably made at field scale.  
This observation gave us some useful information for future CO2 monitoring in coal beds.   
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12.  Appendices 

Appendix A - Feasibility Study on Geophysical Monitoring of CO2 Sequestration 
Various geophysical methods may be used for monitoring CO2 sequestration.  We 

here investigate the applicability of each method, except the seismic method that has 
already been studied in Section 1.  Rock physics models are used to determine the time-
lapse changes in relevant physical properties (e.g., acoustic, electrical, gravity, and 
geodetic) for a variety of rock types.  These rock physics models are used in a synthetic 
formation model to estimate field scale changes.  Results from different settings are 
compared to suggest optimum monitoring techniques for monitoring geologic 
sequestration.  Seismic, electromagnetic, gravitational, and geodetic methods are the four 
broad types of subsurface geophysical monitoring examined.  As a conclusion, the 
seismic method seems most suitable for the CO2 sequestration monitoring.  Table A-1 is 
a summary of those geophysical methods discussed in this section.   

 
 

Table A-1: Summary of the usefulness of geophysical techniques by use and setting. 
 

 Seismic Electromagnetic Gravity Deformation 

CO2 Migration good good poor Poor 

Leak Detection good good poor no 

Geologic Setting any (no gas) aquifers any oil and gas 

Mass Balance poor poor good good 

Rock Strength any (soft better) any any soft 

Formation 

Depth any any shallow shallow 

 
 

A-1 Background  
There is a wide range of monitoring techniques available to monitor CO2 

sequestration.  These methods range from spaceborne satellites to surface stations and 
borehole devices.  The two general options for monitoring are direct and remote sensing 
methods.  Direct sampling methods have high spatial resolution but low spatial coverage; 
examples of these are surface chemical sensors and monitoring wells.  The techniques 
discussed here are subsurface geophysical imaging techniques, which generally have high 
spatial coverage but low spatial resolution.  These are divided into seismic, 
electromagnetic, gravitational, and geodetic techniques.  Geophysical methods have the 
added benefit of being remote.  While a monitoring well would have to penetrate the 
formation seal to gather meaningful hydrologic data or fluid samples, possibly creating 
conduits for CO2 to escape, geophysics may be used to image the area of interest without 
such intrusion.   

 



 49

In examining our monitoring goals, it is evident that none of those goals may be 
wholly achieved without the aid of geophysics, nor will geophysics alone provide the 
solution we need.  Geophysical methods will be necessary to assess CO2 movement and 
storage for a high spatial coverage that monitoring wells alone will be unable to provide.  
That is not to say that direct methods will not be useful; a combination of direct and 
remote techniques will certainly be necessary to effectively monitor sequestration.   

 
As opposed to the use of geophysics for characterization, where the subsurface 

geology is unknown, time-lapse monitoring is only carried out after extensive 
characterization has been carried out in baseline surveys.  Repeatability then becomes an 
important issue, which may be solved through the use of fixed measurement devices 
either on the surface or in the subsurface.  The benefit of time-lapse monitoring is that 
some effects, such as lithology and cementation, are removed as they are assumed to 
remain constant between surveys [1].  The change is then associated only with changes in 
the pore fluid composition and pore pressure.  Most of the research occurring in this area 
has been in seismic reflection and tomography, while geodetic techniques, also time-
lapse, have seen less use in subsurface monitoring. 

 
The most significant changes in the properties of the rocks and fluids in a formation 

undergoing CO2 injection are expected to result from saturation and pressure changes.  
Pressure and saturation changes may have a dramatic effect on the bulk properties of the 
fluid.  Increasing CO2 saturation will cause the bulk fluid density and viscosity to 
decrease, while the effective compressibility will be dramatically increased.  Brine 
conductivity is treated as a constant as the water salinity is assumed to have reached an 
equilibrium state.  Isostress mixing is assumed in the modeling; mixing of the fluids in 
the pore space is assumed to occur at the finest scale.  Changes in the pore fluid and pore 
pressure bring about a host of changes in the effective properties of the saturated rocks, 
which may be detected through the use of remote sensing techniques.  The specific 
changes will be addressed individually, but in general there are changes in the physical, 
acoustic, and electrical properties, ranging from few percent changes in seismic velocity 
to order of magnitude changes in rock conductivity. 

 
A-2 Formation Modeling 

 The four broad subsurface imaging techniques will be examined separately.  Each 
contains a discussion of how the relevant fluid properties change with pressure and CO2 
saturation.  This fluid model is then incorporated into a rock physics model, which is 
dependent on both rock type and pore fluid.  Finally each of the rock physics models is 
applied to a reservoir model to produce field scale changes, which are compared for the 
settings of interest.  The reservoir model is a cylindrically symmetric tabular reservoir 
100 meters thick with a vertical injection well at its center.  Injection is at a constant mass 
rate of 1.5 million tons per year of CO2, and results are displayed after 10 years of 
injection.  The saturation curve and the pressure curve are shown in Figure A-1.  The 
vertical injection well is at the left edge of the figure.  This injection model is meant to 
qualitatively capture the behavior of a CO2 front, not to be a rigorous reservoir simulation. 
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Figure A-1: Radial profile of saturation and pressure at constant depth.  The pressure is 
communicated beyond the saturation front. 
 

The three aspects of CO2 front behavior that the injection model attempts to capture 
are gravity segregation, mixing at the saturation front, and pressure front behavior.  As 
can be seen in Figure A-2a the bubble geometry is driven by gravity segregation resulting 
from the differences in fluid densities.  Under most formation conditions CO2 will be 
lighter than the fluid in-place, resulting in a vertical gravity drive.  Figure A-2b shows the 
pore pressure in the reservoir, which is a combination of hydrostatic background pressure 
with a perturbation from injection pressure varying with radial distance from the well. 
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Figure A-2: (a) CO2 saturation and (b) formation pore pressure in Mpa as a function of depth and 
radius after 10 years of simulated injection. 

 

A-3  Seismic 

A-3.1 Seismic Model 
The seismic properties of the pore fluids that we are concerned with are density and 

the bulk modulus.  The properties of the brine and oil initially present in the formation 
are fairly insensitive to reservoir conditions while the seismic properties of CO2 are much 
stronger functions of pressure and temperature (Figure A-3).  We use the relations 
collected by Batzle and Wang [2] to estimate the seismic properties of the fluids, e.g., oil, 
brine, and hydrocarbon gas.  Gassmann’s fluid substitution is a low frequency theory, 
which allows one to determine the effect of pore fluid changes on rock moduli.  Using the 
above effective fluid properties in Gassmann’s equation [3] along with the mineral 
modulus and the dry rock modulus, one can solve for the saturated moduli with 
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where K0, Kdry, and Ksat are the mineral, dry rock, and saturated bulk moduli, respectively.  
φ  is the porosity and μ is the shear modulus, which is unchanged upon fluid substitution 
under Gassmann’s theory.   The saturated density also changes as a result of changing the 
pore fluid, and can also be calculated from 

 dryflsat ρφφρρ )1( −+=  (A-2) 

To model the stress-dependence of fractured rocks we use the results of Eberhart-
Phillips [4].  Their work is based on data gathered by Han [5] on the stress-dependent 
velocities of 64 sandstone samples.   In practice, stress-dependence will need to be 
determined as part of site characterization.  Eberhart-Phillips used only sandstone data, 
but a similar stress-dependence may occur in fractured carbonates.  They found the 
following empirical relation for compressional and shear velocity as a function of 
porosity, clay content, and effective pressure:   

 

 ( )eP

ep ePCV
7.16446.073.194.677.5 −−+−−= φ   (A-3a) 

           ( )eP

es ePCV
7.16361.057.194.470.3 −−+−−= φ  (A-3b) 

In these two expressions, C is the mineral fraction of clay, Pe is the effective pressure 
in kbar and Vp and Vs are in km/s.  Figure A-4 illustrates the effect of changing effective 
stress on a particular sample, StPeter1.  These data were collected for water-saturated 
rocks. 
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Figure A-3:  Compressional velocities in (a) brine and oil, and (b) CO2 as a function of pressure 
and temperature. 
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Combining Gassmann and Eberhart-Phillips allows one to predict the changes from 

increasing pore pressure and changing saturation with injection and compare the two 
effects.  Figure A-5 and Figure A-6 display the results of numerical experiments on a 
stress-dependent sandstone and a stiffer, unfractured carbonate undergoing CO2 flooding.  
The top curve in each plot is Gassmann, while each of the other curves assumes a linear 
increase in pressure with CO2 saturation.  Each curve begins at the same reference pore 
pressure and at zero CO2 saturation.   The first thing to notice is that the stiffer rock has a 
much smaller percent change in velocity, meaning that any changes will be much harder 
to detect.   Also important is that in the fractured sandstone approximately half of the 
compressional velocity change results from saturating changes and half from pressure 
effects, while the shear velocity is more affected by pressure changes, which agrees with 
published results [6]. 
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Figure A-4:  Data from Eberhart-Phillips for the StPeter1 sample. 
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Figure A-5: Calculated (a) compressional and (b) shear velocities with CO2 saturation using 
Gassmann fluid substitution and sandstone with stress dependence. 
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Figure A-6: Calculated (a) compressional and (b) shear velocities with CO2 flooding using 
Gassmann fluid substitution for a stiff unfractured carbonate rock with stress dependence. 
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A-3.2  Lab Data 
Wang and Nur [7] conducted laboratory experiments on sandstone samples under 

hydrocarbon saturated and CO2 flooded saturations.   The samples were initially saturated 
with n-hexadecane then flooded with CO2 leaving approximately 30% residual oil.   The 
confining stress was kept constant at 20 MPa while the pore pressure was increased from 
approximately 0 to 18 MPa.  The results for the Beaver No.7 sample are shown in Figure 
A-7a.   Figure A-7b shows the simulated results from our model.   

The compressional velocities display similar qualitative behavior while the shear 
velocities exhibit some striking differences.   From Gassmann theory we predict that the 
shear modulus is unchanged upon flooding, and any velocity change will be the result of 
density changes.   As less dense CO2 is displacing hydrocarbon oil we expect that 
flooding will always increase shear velocity.   The unexpected behavior of the shear 
velocity curves in the lab data can be attributed to high frequency viscous effects; 
Gassmann is a zero frequency equation and cannot always describe sample behavior at 
laboratory frequencies.  Measurements made at field frequencies are expected to show 
more Gassmann like behavior. 
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Figure A-7: A comparison between (a) lab data from Wang [5], Beaver No.  7 and (b) our stress-
dependent fluid substitution model.  Black lines are isotherms for hydrocarbon saturated rocks 
and blue lines are isotherms for CO2 flooded rocks.  Confining pressure for all plots is 20 MPa. 
 

 
A-4  Electromagnetic 

While not as popular as seismic methods in the oil industry, electromagnetic (EM) 
techniques have much to offer in the area of monitoring sequestration.  The expected 
changes in electric and magnetic properties to be measured with electromagnetic 
techniques, most notably conductivity, may be of an order of magnitude or more, as 
compared to seismic methods where changes are typically on the order of a few percent.  
This is not to say, however, that electromagnetic techniques will be more useful than 
seismic techniques in CO2 sequestration.  Steel casing severely attenuates higher 
frequency electromagnetic signals, and so reduces the resolution that may be attained.  
Additionally, common earth materials may vary in conductivity by as much as six orders 
of magnitude, so detecting an order of magnitude change may prove challenging.  

(a) (b) 
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Nonetheless, electromagnetic monitoring offers us the ability to measure CO2 saturations 
and provides a complimentary set of measurements to seismic.   

 
A-4.1  Electromagnetic Model  

In dealing with field scale electromagnetic measurements, conductivity plays a 
dominant role in electric and electromagnetic techniques.  Rock conductivity is very 
sensitive to brine saturation and brine conductivity, which is in turn dependent on the 
salinity and temperature of the brine (Figure A-8).  CO2 and other types of initial 
reservoir fluids are very resistive and have a negligible impact on the bulk conductivity of 
both the fluid and the rock.  Here we will estimate brine resistivity at 18oC using a 
polynomial fit [12] then make an approximate temperature conversion[13]. 
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Figure A-8: Brine resistivity in ohm meters as a function of temperature and salinity. 
 

Rock conductivity may be estimated with Archie’s Law and its various modifications.  
It is an empirical formula, which must be fit to the reservoir rocks in the area of interest.  
In its basic form, Archie’s law is given by 

w

n

w

mS
a

σφσ 1
= .     (A-4) 

This expression relates the bulk conductivity σ of the rock to the porosityφ , water 
saturation Sw, and water conductivity σw.  a, m, and n are dimensionless constants which 
will need to be determined for a particular formation, with typical values for clean 
sandstones around 1, 2, and 2 respectively.  Higher values of m have been reported for 
Middle-Eastern carbonate rocks[14].   

 
Conductivity may be measured directly in the shallow subsurface with electrical 

resistance tomography (ERT).  In deep reservoirs and aquifers, however, boreholes are 
widely separated and conductivity measurements need to be made over large distances.  
Using ERT in this manner produces extremely low-resolution images of the subsurface, 
and so other techniques have been developed for this type of situation.  Modern 
electromagnetic techniques make use of magnetic source and receiver dipole antennas to 
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propagate electromagnetic waves over long distances[15].  Early work in this field 
involved the use of 15 and 17 MHz signals to provide high resolution images using strait 
ray tomographic techniques[16].  Using such high frequencies, well spacing was limited 
to several meters.   

 
A-4.2 Reservoir Scale Simulations 

Figure A-9 shows the electromagnetic results from our injection simulation.  As there 
is no pressure dependence for brine resistivity the conductivity profile simply tracks the 
saturation profile.  We see uniform conductivity in the fully flooded and unflooded 
regions with approximately an order of magnitude difference, which we came to expect 
from our rock physics model.  The local attenuation profile (Figure A.9b) changes by a 
factor of 3 between the flooded and unflooded regions.  Like seismic, detailed forward 
modeling will be required to take conductivity and attenuation profiles such as these and 
convert them to measured signals.  Strait ray methods are not appropriate for low 
frequency measurements and only provide a first approximation of the expected 
attenuation. 

0.05

0.1 

0.15

0.2 

Radius (km)

D
e
p

th
 (

k
m

)

0 0.5 1 1.5

1.0

1.05

1.1

0.05

0.1 

0.15

0.2 

Radius (km)

D
e
p

th
 (

k
m

)

0 0.5 1 1.5

1.0

1.05

1.1 0.01 

0.02 

0.03 

Radius (km)

D
e
p

th
 (

k
m

)

0 0.5 1 1.5

1.0

1.05

1.1 0.01 

0.02 

0.03 

Radius (km)

D
e
p

th
 (

k
m

)

0 0.5 1 1.5

1.0

1.05

1.1

 

Figure A-9: (a) Formation conductivity in mho/m and (b) local attenuation in m-1. 
 

Electromagnetic techniques are not strongly dependent on rock type, rock strength, or 
formation depth, but are dependent on initial and final fluid saturations.  Aquifers will be 
the best candidates for electromagnetic monitoring as they will have the largest brine 
saturation changes and therefore the largest conductivity and attenuation change.  
Changes in RCO2 over time are not expected to greatly change the conductivity of the 
formation fluid, though there will be some additional conductivity associated with the 
additional ions in the fluid from the formation of carbonic acid. 

 
A-5 Gravity 

The last two techniques we will discuss are gravitational and geodetic techniques 
which are very similar from a modeling standpoint.  The model we will be using is 
Newtonian gravity.  Changes in pore size from increased pore pressure are expected to be 
negligible compared to the change in gravity resulting from fluid density changes 
(equation 1.2).  Gravity is a low-resolution technique with fundamentally non-unique 
solutions.  Constraining inversions with formation geometry and using only time-lapse 
information can result in much better results. 
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A-5.1 Gravity Model 
Brine and oil density are relatively insensitive to changes in pressure and even to 

increased CO2 in solution.  Almost all of the changes in fluid density associated with CO2 
injection will be from the lower density of the CO2.  Figure A-10 shows the density of 
CO2 as a function of depth with a hydrostatic pressure gradient and a typical geothermal 
gradient (a), and also as a function of pressure and temperature (b).  It is apparent that as 
the formation depth increases the CO2 density will increase to the point where there is 
very little density contrast between the CO2 and the initial reservoir fluid, in which case 
there will be no measurable anomaly.   
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Figure A-10: (a) CO2 density as a function of pressure and temperature and (b) as a function of 
depth with a hydrostatic pressure gradient and a typical geothermal gradient. 
 

The perturbation to the gravitational field due to a point source with some discrete 
volume dV, porosity φ , and density change Δρ, at a distance r is given by 

dV
r

r
Grg fl 2

ˆ
)( ρφΔ−=Δ      (A-5) 

In general the reservoir will have a complex geometry and variable saturation due to 
formation heterogeneity, and as such the contributions of discrete points of density 
change will need to be summed to find the change in the gravitational field.  This solution 
has the form 

                  ∫ −
−

Δ−=Δ
3||

)(
ξ
ξ

ρφξ
x

x
dVGxg ii

fli     (A-6) 

where Δg is the change in the gravitational field at position x  and ξ is the spatial variable 
for the distribution of density changes.  This expression is very similar to the deformation 
model (equation A-4), which will be discussed in the next chapter.  Clearly, a stronger 
signal will result from shallower reservoirs and higher density contrasts.  Porosity will 
have less effect as reducing the porosity will simply force the CO2 to occupy the same 
pore volume, but in a larger bulk volume. 
 

A-5.2  Reservoir Scale Simulations 
We can see that the bulk density percent changes are small (Figure A-11) which is 

expected as the CO2 density is about 0.6 g/cc and the bulk of the mass is in the rock 



 58

matrix.  The gravity change for our homogenous formation is shown in Figure A-12.  The 
curves are for profiles at constant depth, and the radius is measured from the center of the 
injection well.  For example, the measured time-lapse gravity signal after 10 years of 
injection directly over the injection well at a depth of 600 meters would be approximately 
30 microgals, well above instrument sensitivity in the in the absence of cultural noise.  
Newer gravimeters may have resolution as low as one microgal. 
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Figure A-11: (a) Bulk density and (b) bulk density percent change.  The background density in 
our model (dark blue) is 2.25 g/cc. 
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Figure A-12: Time-lapse gravity change as a function of depth and radius from the injection well 
center.  Profiles are at constant depth. 
 
A-6 Deformation  

Geodetic techniques measure displacements or displacement gradients at the earth’s 
surface.  Such techniques are commonly used in the study of earthquakes or volcanoes, 
but they may also have applications in monitoring CO2 sequestration under certain 
conditions.  In a stable tectonic environment, measured deformation over a sequestration 
site should only be the result of induced pressure changes at depth due to fluid injection.  
The magnitude of deformation resulting from a point source, also called a “nucleus of 
strain”, is known.  Integrating this point solution over the region of pressure change will 
produce an arbitrarily complex surface deformation model.  Such techniques have been 
used to explain land subsidence associated with oil production[17]. 
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A-6 .1 Deformation Model 

In a mechanical sense, fluids only contribute to surface deformation through the pore 
pressure changes that they carry.  That said, the more compressible the reservoir fluids 
and the larger the volume of reservoir fluid, the less pressure buildup will occur.  The 
deformation model we use is to couple poroelastic theory with the so-called Mogi model 
[18].  The solution is given by 

     ∫ −
−−
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3||
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ξα
μ

υ
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where u is the displacement vector at point of measurement x  on the free surface (x3 = 0) 
and ξ is the spatial variable for the distribution of pressure change.  Important to note is 
that the magnitude of deformation is linearly related to pressure change, inversely related 
to the rock modulus, and falls off inversely with distance squared.   

 
An important difference between surface subsidence seen in producing oil fields and 

uplift expected from sequestration lies in the magnitude of expected deformation.  While 
the fundamental equations are unchanged between the two cases, the effective modulus 
may be very different.  This occurs mostly in poorly consolidated sandstones as 
increasing effective stress, by decreasing the pore pressure with a constant overburden, 
results in the compaction of the rock along the “virgin curve”[19] a process which 
changes the moduli of the rock.  Decreasing the effective stress, however, causes the rock 
to unload on a different curve described by Eberhart-Phillips (Figure A-13), which is 
nearly elastic for small pressure perturbations. 
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Figure A-13: Bowers’ virgin curve and Eberhart-Phillips unloading curve behavior. 

 

A rule of thumb is that the ratio of the compaction coefficient to rock compressibility 
is approximately ten to one, meaning that ten times as much subsidence is expected to be 
associated with a negative pore pressure change as would occur from a positive pressure 
change of the same magnitude.  For subsidence, depending on the type of reservoir rocks 
present, either elastic compression or inelastic compaction may occur.  Elastic 
compression normally occurs in very hard rocks like carbonates or upon reloading of 
sandstones.   

 
 



 60

A-6.2 Reservoir Scale Simulations  
Figure A-15 shows the deformation and tilt results associated with the pressure 

changes given by our model (Figure A-14).  One millimeter of displacement is well 
below the detectability threshold of modern instruments; instrument sensitivity is 
typically on the order of one centimeter of vertical resolution for continuous GPS and 
InSAR (interferometric synthetic aperture radar).  GPS has the better sensitivity while 
InSAR is desirable because of the low cost of processing and the wide spatial coverage.  
Given this sensitivity, depending on the depth, rock type, and pressure changes detecting 
signals from sequestration may not be possible using either of these techniques.  A more 
useful technique may be the use of tiltmeters as the one microradian predicted by our 
modeling represents a very detectable signal.  Tiltmeters may have sensitivities as low as 
0.1 microradian, below the peak expected signal from only one year of injection in our 
model. 
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Figure A-14: Pore Pressure change in MPa from initial pore pressure. 
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Figure A-15: Deformation results after 10 years of injection.  (a) Vertical surface displacement 
and (b) surface tilt for a surface profile passing over the injection well.   
 

Surface geodetic techniques, much like gravity, are low-resolution techniques.  
Source geometry is poorly constrained for inversion and as such it is likely that in any 
sequestration monitoring application would be focused more on mass balance and bulk 
storage of on CO2 than on CO2 migration and leak detection.  Downhole tiltmeters have 
been suggested for measuring deformation at a more local level.  Such instruments could 
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potentially detect deformation associated with hydrofracs in low porosity carbonates[1], 
as well as providing more focused data on pore pressure changes.   

 
As the signal is strongly dependent on the depth, rock type, and pressure buildup, 

sites will need to be assessed on a case-by-case basis for usefulness of these geodetic 
techniques.  In general, smaller systems with closed boundaries, as are commonly found 
in oil reservoirs, will lead to larger pressure changes and greater signals.  Large open 
systems, like brine aquifers, may have virtually no pressure changes if permeability is 
sufficiently high.  The presence of a large gas cap would also have a significant effect on 
pressure changes.  Having a large volume of highly compressible gas would reduce any 
pressure increase resulting from injection. 

 
A-7 Conclusions 

While it would be very difficult to accurately predict the values of the physical 
parameters in a real formation either before or after CO2 injection, accurately predicting 
time-lapse changes from a baseline survey is much easier.  Most of the geophysical 
models used here are either empirical relations or only true for an idealized isotropic 
elastic material.  Using models such as these provide only approximate solutions but give 
valuable insight into the behavior of these systems.   

 
The results of the above discussions are summarized in Table A-1.  Not surprisingly 

seismic, being the highest resolution technique, has the widest range of uses and is not 
limited by geologic setting except as previously noted.  The SACS project at Sleipner has 
certainly confirmed the ability of seismic monitoring to track CO2 in the subsurface.  
High resolution 3-D seismic is also one of the most expensive techniques to use, costing 
on the order of a million dollars per survey.  While this cost is high, when compared to 
the expected costs sequestration it should not constitute a very significant expense[20]. 

 
These monitoring techniques also need not be used independently.  LBNL conducted 

at study at the Lost Hills field in southern California during a CO2 injection pilot study 
[21].  They used both high resolution crosswell seismic and electromagnetic monitoring 
to find compressional and shear velocities as well as conductivity.  Using the 
combination of these methods they were able to separate pressure and saturation changes 
from RCO2 effects.  Using combination of techniques to constrain our models may prove 
necessary to reach our monitor goals for CO2 sequestration.   
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Appendix B - Dynamic Diffusion Model for DARS Permeability Estimation   
Wave propagation in a fluid-saturated porous medium results in complex interactions 

between the saturating fluid and the solid matrix.  The presence of fluid in the pore space 
makes the elastic moduli frequency-dependent.  The bulk modulus of a porous medium 
involves information about the flow properties of the medium.  Because the micro-flow 
associated with acoustic wave does not involve mass transportation of the pore fluid, we 
call it dynamic flow to distinguish it from conventional flow.  A dynamic diffusion model 
that relates the effective compressibility to the permeability is derived and applied to the 
interpretation of DARS experimental results. 

  
In DARS (Differential Acoustic Resonance Spectroscopy), a standing wave inside the 

cavity provides a spatially varying but harmonic pressure field in the cavity.  In a fluid-
saturated porous medium that is subjected to this small-amplitude oscillatory pressure 
gradient, the pressure fluctuation will cause micro-scale fluid flow through the surface of 
the sample to release the differential pressure across the surface boundary.  The net mass 
transport of the pore fluid is zero; therefore, this micro-scale flow behaves differently 
from conventional fluid flow.  This dynamic flow phenomenon can be described as a 
quasi-static diffusion process.  If the porous medium is homogeneous, the dynamic flow 
can be modeled by a 1D diffusion equation 

 

 
x

p

Dx

p

∂
∂

=
∂

∂ 1
2

2

, (B-1) 

with diffusivity D  given by φηβ/kD = .  Here, φ  and k  are porosity and permeability of 
the porous sample, respectively, p  is the acoustic pressure in the fluid, η  is the viscosity 
of the fluid, and β  is the compressibility factor involving both the fluid and the solid 

matrix simultaneously.  If acoustic pressure is harmonic in time, tiexptxp ω)(),( = , we can 
rewrite equation B-1 as 
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A general solution of equation B-2 is 
 
 xx BeAexp αα −+=)( . (B-3) 

Here, Diωα =  and ω  is angular frequency. 

In our particular case, the dynamic flows are in and out the sample at the two open 
ends when the exciting mode has longitudinal pressure variations; therefore, the pressure 
distribution inside the pore space is a superposition of two opposite pressure profiles, 

with boundary conditions 0)( pLp =  and 0)( pLp =− , respectively, when the sample is at 
the center of the cavity.  Applying these two boundary conditions, we get the solution of 
the pressure field inside the porous sample, 
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The effective compressibility of fluid-saturated porous materials under a periodic load 
can be expressed by the ratio of the net volumetric strain of the material to the stress 
applied on the sample.  The net volume change of the sample consists of contributions 
from the solid matrix and the pore fluid.  Therefore, the effective compressibility of the 
porous sample can be written as  

 

 
( )

0

1

p

VV

V

fm

s
e

Δ+Δ
−=κ , (B-5) 

 
where sV  is the bulk volume of the sample.  mVΔ  is the volume change of the frame (the 

wet- frame in this case, because the sample is saturated), and fVΔ  is the volume of the 

extra amount of fluid flowing in and out the pore space; 0p  is the amplitude of pressure 

change.  Here we assume the compressibility of the wet matrix is uκ , hence, mVΔ  can be 

expressed as 

 0pVV sum κ−=Δ . (B-6) 

The parameter uκ  is defined to be the undrained wet-frame compressibility for fluid-

saturated porous materials.  This parameter is also recognized as the reciprocal of the 
Gassmann wet-frame bulk modulus.   

 
In a cylindrical porous sample with a jacketed side surface, diffusion happens only at 

the two open ends.  The volume of the free-flowing fluid can be quantified as follows  
 

        ∫ ∫−=−=Δ dxxpadVxpV fff )()( 2 κφπφκ .                  (B-7) 

Rewriting equation B-5 by substituting equations B-4, B-6 and B-7 into it, we get the 
final expression for the effective compressibility, 
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The effective bulk modulus is simply the inverse of the effective compressibility.  
The second term on the right hand side of equation B-8 is named as the dynamic flow 
component of compressibility.  If eκ  and uκ  in equation B-8 are measured as described in 

Section 1.4, then we can solve equation B-8 for α  alpha or permeability if other 
parameters are known. 
 



 64

Appendix C - Seismic Simulation Tools  
Full-waveform seismic simulation is essential for developing new monitoring 

methods, studying survey design, testing processing schemes and algorithms, and for 
interpreting the imaging results.  Moreover, it is important to incorporate the latest-
known physics into the simulation methods.  In our case, we need to include attenuation.  
Seismic attenuation has not been studied for subsurface monitoring.  Changes in seismic 
attenuation (and velocity) associated with saturation changes should be observable as a 
monitoring signature.  We have developed a suite of modeling tools, some with complex 
fluid-solid physics.  The GCEP suite includes semi-analytic methods (R/T) and finite-
difference (FD) modeling codes to simulate wave propagation in acoustic, elastic, visco-
elastic, and poro-elastic media.  In Table B-1 we list the suite of modeling tools 
developed for GCEP.  Only a newly developed finite-difference method is presented in 
Appendix C for details.   

 
 
Table C-1:  The GCEP full-waveform seismic modeling suite includes visco-elastic 
and poro-elastic codes for the study of attenuation. 
 

Governing equations  

Available codes 

Acoustic Elastic 
Visco-
elastic 

Poro-
elastic 

Elastic TI 
media 

Elastic full 
anisotropic 

media 
R/T method for 1-D 
horizontally layered 
models 

 

 

 
X 

 
X 

 
X 

  

R/T method for 1-D 
radially layered 
models 

 
X X 

X 
  

R/T method for 2-D 
radially symmetric 
media 

  
X 

 
X 

   

2-D regular/variable 
grid FD method X X X X X X 

3-D regular/variable 
grid FD method X X X  X X 
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Appendix D - Optimized Variable-grid Finite Difference Method for Seismic Modeling 

Finite Difference (FD) methods have historically dominated elastic wavefield 
modeling in geophysics because of their flexibility in representing complex models and 
their computational efficiency.  Recently, variable-grid FD techniques have been 
developed to avoid spatial oversampling when applied to multi-scale structures[23] or 
large-scale structures with high velocity contrasts[24].  However, variable-grid FD 
methods developed based on the Taylor series approximation may suffer unacceptable 
dispersion. 

 
We have developed an optimized fourth-order staggered-grid FD operator on a mesh 

with variable grid spacing based on the idea of the DRP (dispersion-relation-preserving) 
scheme[25].  The philosophy of the DRP method is to optimize the FD scheme 
coefficients by matching the effective wave number and the actual wave number over a 
particular wave number range.  Comparison of the spectral properties between the 
optimized and the Taylor variable-grid FD schemes illustrates that the optimized scheme 
has less dispersion errors than the Taylor scheme[24] with the same stencil.  We apply 
this technique for a solution of 2-D velocity-stress elastic wave equations and 
demonstrate the accuracy and efficacy of this method on some numerical examples. 

 
C-1  Optimized Variable-grid FD Operator 

The optimized variable-grid FD operator derived here is based on the idea of the DRP 
scheme proposed by [25].  To illustrate the problem, the 1-D velocity-pressure wave 
equations are considered (because spatial derivatives with respect to x, y and z are 
decoupled, the 1-D wave equation illustration will not lose generality):  
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where p and v are pressure and particle velocity, respectively; ρ is density and K is bulk 
modulus.  Discretizing these equations by a staggered-grid FD mesh with variable grid 
spacing yields the scheme shown in Figure D-1. 
 

 

Figure D-1: (a) Schematic representation of unit cells and (b) the variable grid spacing. 
 

Suppose that the field variable g represents particle velocity v or pressure p.  The 
approximation of the first-order spatial derivative ∂g/∂x by a fourth-order FD operator on 
a non-uniform grid of spacing dx is given by 
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where ci are four coefficients to be determined.  Spatial increments Δi can be expressed in 
terms of the variable grid spacing dx (Figure D-2).  After Fourier transform of equation 
D-2, the effective numerical wave number of the FD scheme can be calculated by 

)( 4321
4321

Δ−ΔΔ−Δ +++−= ikikikik

e ececececik .                  (D-3)      

For the optimized FD scheme, the coefficients ci in equation D-3 are chosen so that 
the effective wave number ke is close to the actual wave number k for a wide range of 
wave numbers.  The coefficients ci are determined by imposing the condition that 
equation D-3 is accurate to the third-order of Δi through Taylor series expansion:  
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Figure D-2: Grid nodes with variable spacing.  Δi (i = 1, 4) are used to calculate the FD operator 
centered between (a) the nodes i and i+1 and (b) that centered at the node i. 
 
This leaves one of the coefficients, e.g., c1, as a free parameter.  This parameter is then chosen to 
minimize the integrated error E defined as  
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where η is a predetermined number that gives the optimized range of wave numbers.  The 
weighting coefficient λ, is used to balance the L2 norm of the truncation errors of the 
approximation of the real and imaginary parts of the effective numerical wave number to 
the actual wave number.  The necessary condition used to minimize E is  
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From equation D-6, we can get c1 analytically.  Then c2, c3, and c4 can be obtained from 
equation D-4.   

 
We compare the spectral properties of this optimized variable-grid FD operator and 

the same order Taylor variable-grid FD operator[24] for different variable-grid meshes.  
Figure D-3 shows the relation between Re(ke)dxmin and kdxmin of both schemes for the 
stencil in Figure D-2(a) with the spacing ratio(r) between the coarse grid and the fine grid 
of 1, 3 and 6.  The closer the curves are to the exact relation Re(ke)dxmin=kdxmin, the 
smaller the dispersion.  Figure D-3 demonstrates that the optimized FD scheme has less 
dispersion errors than the FD scheme based on Taylor series expansion with the same 
mesh.  In fact, the spectral resolution properties of the optimized FD scheme with the grid 
spacing ratio of 6 is much better than that of the Taylor variable-grid FD scheme with the 
same stencil and is even close to that of the Taylor regular grid FD scheme (spacing ratio 
of 1).  This means that the optimized variable-grid FD scheme with large spacing ratios 
between two grid domains can give the same accurate results as the Taylor variable-grid 
FD scheme with small spacing ratios.  Therefore, the optimized variable-grid FD 
technique can lead to either more accurate results with the same number of grid cells or 
more efficient calculations with fewer cells compared to the Taylor variable-grid FD 
method.   
 

 
Figure D-3: Re(ke)dxmin versus kdxmin of the optimized and Taylor variable-grid FD schemes for 
the stencil in Figure D-2(a).  r represents the spacing ratio of the coarse grid to the fine grid.  The 
exact relation is Re(ke)dxmin=kdxmin.   
 
D-2  Applications of the optimized variable-grid FD operator   

To test the accuracy and the efficiency of the proposed optimized variable-grid FD 
scheme, we implement it for a solution of 2-D velocity-stress elastic wave equations.  
The following are two numerical examples.   
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D-2.1  Homogeneous model  
The homogeneous model with physical properties: Vp=2300 m/s, Vs=1100 m/s and 

ρ=2100 kg/m3, is shown in Figure D-4.  We use this model to test the accuracy of the 
optimized variable-grid FD scheme when the grid spacing increases abruptly from 2 m to 
6 m with a ratio of 3 in both x and z directions.  The dashed line in Figure D-4 represents 
the boundary between the small grid spacing domain and the large grid spacing domain.  
A vertical dipole source (S), located at (450 m, 450 m), has a Ricker pulse with central 
frequency of 20 Hz.  Receivers R1 and R2 are placed on the left- and the right-hand sides 
of the domain boundary, respectively.   
 

 

Figure D-4: Homogeneous model. 
 

Figures D-5 and D-6 present the comparison of the horizontal and vertical 
displacements calculated by the optimized variable-grid FD scheme with those obtained 
from the analytical solutions[26] and the Taylor regular-grid FD scheme with a constant 
grid spacing of 2 m at receiver R1 and R2, respectively.  The agreement among the three 
solutions is very good.  Note that the FD schemes with variable- and regular-grid spacing 
give essentially identical results indicating both the reflection and the transmission 
artifacts from the domain boundary of the variable-grid FD scheme are negligible.   
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Figure D-5: Comparison of optimized variable-grid FD method (OVGFD) with the analytic 
solutions and the Taylor regular-grid FD scheme (TRGFD) at receiver R1: (a) horizontal 
displacement; (b) vertical displacement. 

 

 

Figure D-6: Comparison of optimized variable-grid FD method (OVGFD) with the analytic 
solutions and the Taylor regular-grid FD scheme (TRGFD) at receiver R2: (a) horizontal 
displacement; (b) vertical displacement. 

 

 
 



 70

D-2.1  Thin-layer model 
The accuracy of the optimized variable-grid FD technique has been verified for a 

homogeneous region.  Now we apply it for modeling wave propagation in a thin-layer 
model (Figure D-7).  The size of the model is 6000 m × 2000 m.  A water-filled thin layer 
with 1 m thickness is embedded in the model.  The purpose of the modeling is to see if 
the effects of the thin fluid-filled layer can be observed in the seismograms.  Table D-1 
provides the physical properties of the model.  The source, centered in y direction and 
located 600 m below the top, is a 20 Hz Ricker wavelet in pressure.  Receivers are on 
both sides of the source and on the same level as the source.  To resolve the thin layer 
with 1 m thickness, a very fine mesh (at least 0.2 m) is required.  An equally spaced mesh 
with sufficient resolution to describe the thin layer in this large-size model requires too 
much memory for most computers.  For the optimized variable-grid FD method, the 
vertical grid spacing smoothly increases from 0.2 m to 5.4 m with a 7.2 m wide transition 
region.  The horizontal grid spacing is 5.4 m throughout the grid.  The total grid size for 
this variable-grid mesh is NX × NZ = 1225 × 517 which is only 4.08 percent of the total 
grid size for the regular-grid mesh with constant dx = 0.2 m in the entire model (NX × 
NZ = 30000 × 517); therefore, the variable-grid FD scheme saves over 95 percent 
computer memory for this model compared to the regular-grid FD scheme.  Consequently, 
the computation time is reduced by more than 24 times.   

 
Table D-1.  Material properties of the thin-layer model 

No. Vp(m/s) Vs(m/s) ρ(kg/m3) 

1 3000 1700 2300 

2 1500 0 1000 

 

    

Figure D-7: Thin-layer model. 
 

Figure D-8 shows the wavefield snapshots of horizontal and vertical particle 
velocities.  Reflections and transmissions from the thin water-filled layer can be seen.  No 
artifacts are generated by smoothly varying spacing in the vicinity of the thin layer.  
Seismograms of the horizontal and vertical particle velocity components are shown in 
Figure D-9.  We can clearly see the reflected P- and S-waves from the thin layer in 
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addition to the direct P-wave.  This modeling study demonstrates that we need to include 
the effects of thin fluid-filled layers into the field data analysis.   

 

Figure D-8:  Snapshots of horizontal particle velocity (Vx) and vertical particle velocity (Vz) 
components of the thin-layer model.  Reflections and transmissions from the thin layer can be 
seen. 

 
Figure D-9: Seismograms of horizontal particle velocity (Vx) and vertical particle velocity (Vz) 
components of the thin-layer model.  Reflected P- and S-waves from the thin water-filled layer 
are observed in addition to the direct P-wave. 

 

In conclusion, this optimized variable-grid FD scheme has less dispersion errors than 
the Taylor variable-grid FD scheme with the same stencil.  Numerical examples 
demonstrate that the proposed technique can efficiently and accurately simulate wave 
propagation in large models with physically small features.   
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Appendix E - Seismic Monitoring of Coal Bed Methane Production: A Case Study 
from Powder River Basin, Wyoming 

CO2 storage in coal beds is an important geological sequestration option.  This is a 
cost-effective storage if associated with methane production, because injected CO2 may 
enhance the methane production.  Depending on the coal rank, coal generally has high 
CO2 adsorbing capacity.  Coal has global and vast geographical distribution and is often 
close to CO2 emission sources.  The field study presented here is an example of seismic 
monitoring for coal bed methane (CBM) production and there were no CO2 storage 
activities involved yet.  This field test showed that the velocity changes caused by gas in 
coal are detectable by the seismic method.  The results of this monitoring experiment 
should provide useful information for future CO2 sequestration project.   

 
E-1  Objective 

This CBM project was carried out in Powder River Basin, Wyoming.  The primary 
goal of this project is to pump out the water in coal beds and increase CBM production.  
This dewatering process will reduce the pore pressure and increase gas saturation.  
Therefore, the depressurization can enhance the CBM production[32,33].  To monitor the 
dewatering process, three crosswell seismic surveys were acquired in different times.  
Higher gas saturation lowers P-wave velocity.  Lower pore pressure (or higher effective 
differential pressure) will increase both P-wave and S-wave velocities.  The objective of 
monitoring is to detect the time-variant distributions of the seismic velocities, and then 
infer the spatial distribution of gas between wells.  The results might be helpful in 
identifying both the source of water produced and the spatial efficiency of the dewatering 
process.   

 
E-2  Data Acquisition 

Two observation wells, spanning 150ft and straddling a production well were used for 
the crosswell surveys (see Figure E-1).  The baseline or reference survey was acquired in 
December 2002, shortly after the production well was completed and before dewatering 
began.  Two time-lapse monitoring surveys were run in July 2003 and June 2004, 
respectively.  Each of the surveys covered about 900ft to the total depth of the wells at 
about 1400ft.  Shots were fired from a down-hole piezoelectric source every 1.25ft in the 
source well.  The seismic waves propagated between wells were picked up by an array of 
hydrophones positioned inside the receiver well.  There were 182 source positions and 
116 receiver positions. 

 
E-3 Data Processing 

Let us first intuitively inspect the data quality and some of simple features in the data 
through zero-offset gathers (source and receiver are at the same depth levels).  Figure E-2 
shows three zero-offset gathers extracted from three surveys.  We only expect that 
seismic events with the coal bed have relatively large change between time-lapse surveys.  
We place red markers on first arrivals within and outside the coal bed in Survey 1 as 
shown in Figure E-2.  We then projected same markers onto Surveys 2 and 3, 
respectively.  As displayed in the resultant images, the arrival time outside the coal bed 
changes little from survey to survey, which means the repeatability of the data acquisition 
is good.  The travel time within the coal bed has visible shift from survey to survey.  The 



 73

travel time of Survey 2 is longer than Survey 1.  However, the travel time of Survey 3 is 
shorter than Survey 2 and close to Survey 1.  We will try to explain this observation later.   

 
Figure E-1: Crosswell seismic survey geometry 

 

 
P-wave first arrivals are picked and used for velocity tomography.  Figure E-3 is the 

velocity tomogram for baseline survey.  Gamma ray logs from the source and receiver 
wells are plotted alongside the tomogram to show the geologic structures.  We also 
reconstruct the velocity tomograms for Survey 2 and Survey 3 shown in Figure E-4.  To 
compare P-wave velocity changes due to dewatering, we compute the differences 
between different tomograms as shown in Figure E-5.  The first difference tomogram 
(∆Vp1) is computed from tomograms for the baseline survey of December 2002 and first 
repeat survey of July 2003 (after about 8 months of dewatering).  The second difference 
tomogram (∆Vp2) is computed from the tomograms for the baseline survey of July 2002 
and second repeat survey of June 2004 (after about 19 months of continuous dewatering).  
The third difference tomogram (∆Vp3) is computed from two repeat tomograms. 

 
E-4  Data Interpretation 

Four distinct geologic units can be identified from gamma ray logs and baseline 
tomogram.  They include shaly-sand, sandy-shale, coal, and sandstone.  Of interest to us 
is the low-velocity, biogenic and low-rank Big George coal zone at a depth of 1150ft 
to1240ft.  The top of the coal aquifer is confined by the low permeability sandy-shale.   
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Figure E-2: A display of zero-offset sections for the three data sets showing evidence of 
production-induced changes within the coal reservoir and repeatability of events outside the 
reservoir. 
 
 

 
Figure E-3: Baseline tomogram with gamma ray logs.  Insets are tomogram-derived velocity logs. 

 

Survey 1 

Survey 2 

Survey 3 
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The first difference tomogram ∆Vp1 shows a 4-5% reduction in Vp within the coal 
zone, perhaps due to partial gas saturation and/or methane desorption.  We can see from 
∆Vp2 that P-wave velocity within the coal zone has little change between Survey 3 and 
Survey 1; that means that the velocity increases 4-5 % from Survey 2 to Survey 3 (see the 
difference tomogram ∆Vp3 in Figure E-5).  Figure E-6 gives a possible explanation on 
interesting up-down changes in velocities.  The P-wave velocity changes are caused by a 
mixing effect of gas saturation and pore-pressure changes.  At the beginning of the 
dewatering, the gas saturation increasing is dominant and reduces overall velocity.  At 
later time, the dewatering mainly increases differential pressure.  Differential pressure is 
defined as confining pressure minus pore pressure.  Higher differential pressure causes 
the closing presumably layer cavities or air-filled cracks [34] in the coal, which makes 
the wave travel faster.  This is may explain the P-wave velocity increase from Survey 2 
to Survey 3.   

 
Figure E-6 is created based on the laboratory P-wave data on a Permian coal sample 

[35] and Gasmann’s equation [36].  We conditioned the data to reflect the prevailing geo-
reservoir conditions at the PRB and the observed baseline coal velocities.  The sample 
has porosity of 2.9% and density of 1.35g/cc.  We also use appropriate fluid properties 
and coal physics relationships for P-wave velocity, effective fluid modulus and density of 
a fluid-saturated rock [37].   

 
This field test showed that the velocity changes caused by gas in coal are detectable 

by the seismic method.  In order to separate the saturation and pressure effects on 
velocities, we need to use S-wave information.  In this study, we only used P-wave first 
arrivals, because the S-wave signal is too poor to pick.  The Western Resources Project 
sponsored the data acquisition for this study.  GeoTomo provided certain software 
support. 

 
Figure E-4: Baseline and repeat tomograms (from left: Survey 1, Survey 2 and Survey 3). 
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Figure E-5:  Measured difference tomograms from the time-lapse surveys.  From left is the 1st 
difference tomogram, ∆Vp1 (Survey2 minus Survey 1); 2nd difference tomogram, ∆Vp2 (Survey 3 
minus Survey 1) and 3rd difference tomogram, ∆Vp3 (Survey 3 minus Survey 2).  Arrow shows 
the location of the production well. 
 

 

 
Figure E-6: P-wave velocity in saturated coal as a function of differential pressure. 
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