

PDH-Pro.com

Design Considerations for Enhanced Reductive Dechlorination

Course Number: EN-02-902

PDH: 3

Approved for: AK, AL, AR, DE, FL, GA, IA, IL, IN, KS, KY, LA, MD, ME, MI, MN, MO, MS, MT, NC, ND, NE, NH, NJ, NM, NV, NY, OH, OK, OR, PA, SC, SD, TN, TX, UT, VA, VT, WI, WV. and WY

State Board Approvals

Florida Provider # 0009553 License #868
Indiana Continuing Education Provider #CE21800088
Maryland Approved Provider of Continuing Professional Competency
New Jersey Professional Competency Approval #24GP00025600
North Carolina Approved Sponsor #S-0695
NYSED Sponsor #274

Instructor: Mathew Holstrom

How Our Written Courses Work

This document is the course text. You may review this material at your leisure before or after you purchase the course.

After the course has been purchased, review the technical material and then complete the quiz at your convenience.

A Certificate of Completion is available once you pass the exam (70% or greater). If a passing grade is not obtained, you may take the quiz as many times as necessary until a passing grade is obtained).

If you have any questions or technical difficulties, please call (508) 298-4787 or email us at admin@PDH Pro.com.

ACRONYMS AND ABBREVIATIONS

AFCEC Air Force Civil Engineer Center

ARTT Alternative Restoration Technology Team

BMP Best Management Practice

CERCLA Comprehensive Environmental Response, Compensation, and Liability Act

CH₄ methane

CLEAN Comprehensive Long-Term Environmental Action, Navy

CO₂ carbon dioxide

COC contaminant of concern CQC Construction Quality Control

CSM conceptual site model

CVOCs chlorinated volatile organic compounds

DB Design-Build DBB Design-Bid-Build

DNAPL dense non-aqueous phase liquid

DO dissolved oxygen

DoD United States Department of Defense DON United States Department of Navy

DPT direct push technology

ER Environmental Restoration

ERD enhanced reductive dechlorination

ESTCP Environmental Security Technology Certification Program

FEAD Facilities Engineering and Acquisition Division

FEC Facilities Engineering Command

GHG greenhouse gas

GSR green and sustainable remediation

ITRC Interstate Technology and Regulatory Council

MNA monitored natural attenuation

NAPL non-aqueous phase liquid

NAVFAC Naval Facilities Engineering Command

ORP oxidation-reduction potential

P&ID Process and instrumentation diagram

PCE perchloroethylene

PRB permeable reactive barrier

Copyright 2024 Page i

Design Considerations for Enhanced Reductive Dechlorination

PV pore volume

PVC polyvinyl chloride

QA/QC quality assurance and quality control

QAO Quality Assurance Officer QAPP Quality Assurance Project Plan

RAC Remedial Action Contract RAO Remedial action objective

RCRA Resource Conservation and Recovery Act

ROI radius of influence

RPM Remedial Project Manager

SERDP Strategic Environmental Research and Development Program SMART specific, measurable, attainable, relevant, and time-bound

TCE trichloroethylene TTZ target treatment zone

UFC Unified Federal Criteria

UFGS Unified Facilities Guide Specifications

U.S. EPA United States Environmental Protection Agency

WBDG Whole Building Design Guide

ZVI zero valent iron

Copyright 2024 Page ii

TABLE OF CONTENTS

1.0	PURPOSE	1
2.0	ENHANCED REDUCTIVE DECHLORINATION	2
3.0	REMEDIAL DESIGN SUBMITTALS	4
4.0	KEY CSM ELEMENTS	6
	4.1 Key CSM Elements and Potential Impacts to ERD Designs	6
	4.2 Remedial Action Objectives and Remedial Goals	
	4.3 Key Issues of Concern for Regulators and other Stakeholders	10
5.0	KEY DESIGN ELEMENTS	11
	5.1 Consideration of Site Lithology/Geology and its Effect on ERD Approach	11
	5.2 Bench-Scale and Pilot Tests	11
	5.3 ERD Amendment Selection	
	5.4 ERD Amendment Delivery	
	5.5 Monitoring Plan	
	5.6 Optimization	
	5.7 Sustainability	28
6.0	DRAWINGS	31
7.0	SPECIFICATIONS AND STANDARDS	32
8.0	SCHEDULE	34
9.0	REFERENCES	35
	LIST OF TABLES	
Table	e 2-1. Typical Biodegradation Mechanisms for Selected CVOCs	3
	e 4-1. Key CSM Elements for ERD Applications	
	e 4-2. Impacts of Several Site-Specific Factors on ERD Design	
Table	e 5-1. Design Considerations for the Application of Electron Donors for ERD	12
	e 5-2. Amendment Delivery Strategy Considerations	
	e 5-3. General Guidance for Determining Amendment Dosing	
	e 5-4. Comparison of DPT Injection Points and Permanent Wells for Reagent Applicat	
	e 5-5. Examples of Endpoints, Milestones, and Metrics for ERD Operations	
	e 5-6. Common Process Monitoring during ERD Injection	
	e 5-7. Common Performance Monitoring during ERD	
Table	e 5-8. Performance Monitoring Checklist	26

Design Considerations for Enhanced Reductive Dechlorination

Table 5-9. Remedial Design Optimization Concepts	27
Table 5-10. BMPs for Improving the Sustainability of ERD	
Table 7-1. UFGS Relevant to ERD Design	
Table 8-1. Typical Schedule Milestones for ERD Design and Implementation	

Copyright 2024 Page iv

1.0 PURPOSE

A recent survey of Naval Facilities Engineering Command (NAVFAC) Remedial Project Managers (RPMs) found that chlorinated solvents in groundwater remain a key issue at impacted sites and that enhanced reductive dechlorination (ERD) is a frequently selected remedy for treatment of these solvents. The results of the survey also suggested that technology transfer tools are needed to help to improve the design and performance of ERD at Navy sites.

The purpose of this course is to provide a framework for design submittals for ERD systems, including a summary of best practices for bioremediation design, tips for appropriate quality assurance and quality control (QA/QC) measures, and a listing of available standards and references. The goal is to assist in the development of improved and consistent design submittals within the U.S. Department of the Navy (DON) Environmental Restoration (ER) Program.

Copyright 2024 Page 1

Purchase this course to see the remainder of the technical materials.